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Key Points  

 Satellite and in situ observations independently show an approximate doubling of Earth’s 

Energy Imbalance (EEI) from mid-2005 to mid-2019 

 Anthropogenic forcing, internal variability, and climate feedbacks all contribute to the 

positive trend in EEI 

 Marked decreases in clouds and sea-ice and increases in trace gases and water vapor combine 

to increase the rate of planetary heat uptake 
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Abstract 

Earth’s Energy Imbalance (EEI) is a relatively small (presently ~0.3%) difference between global 

mean solar radiation absorbed and thermal infrared radiation emitted to space. EEI is set by natural 

and anthropogenic climate forcings and the climate system’s response to those forcings. It is also 

influenced by internal variations within the climate system. Most of EEI warms the ocean; the 

remainder heats the land, melts ice, and warms the atmosphere. We show that independent satellite 

and in situ observations each yield statistically indistinguishable decadal increases in EEI from 

mid-2005 to mid-2019 of 0.500.47 W m-2 decade-1 (5%-95% confidence interval). This trend is 

primarily due to an increase in absorbed solar radiation associated with decreased reflection by 

clouds and sea-ice and a decrease in outgoing longwave radiation (OLR) due to increases in trace 

gases and water vapor. These changes combined exceed a positive trend in OLR due to increasing 

global mean temperatures. 

Plain Language Summary 

Climate is determined by how much of the sun’s energy the Earth absorbs and how much energy 

Earth sheds through emission of thermal infrared radiation. Their sum determines whether Earth 

heats up or cools down. Continued increases in concentrations of well-mixed greenhouse gasses 

in the atmosphere and the long time-scales time required for the ocean, cryosphere, and land to 

come to thermal equilibrium with those increases result in a net gain of energy, hence warming, 

on Earth. Most of this excess energy (about 90%) warms the ocean, with the remainder heating the 

land, melting snow and ice, and warming the atmosphere. Here we compare satellite observations 

of the net radiant energy absorbed by Earth with a global array of measurements used to determine 

heating within the ocean, land and atmosphere, and melting of snow and ice. We show that these 

two independent approaches yield a decadal increase in the rate of energy uptake by Earth from 
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mid-2005 through mid-2019, which we attribute to decreased reflection of energy back into space 

by clouds and sea-ice and increases in well-mixed greenhouse gases and water vapor. 
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1. Introduction 

Increasing well-mixed greenhouse gases (WMGG) have led to an imbalance between how 

much solar radiant energy is absorbed by Earth and how much thermal infrared radiation is emitted 

to space. This net radiation imbalance, also referred to as Earth’s energy imbalance (EEI), has led 

to increased global mean temperature, sea level rise, increased heating within the ocean, and 

melting of snow and sea ice (IPCC, 2013). In addition to anthropogenic radiative forcing by 

WMGG, EEI is influenced by aerosol emissions and land use change as well as by natural forcings 

associated with volcanic emissions and variations in solar irradiance. As the climate system 

responds to warming, changes in clouds, water vapor, surface albedo and temperature further alter 

EEI. These properties also respond to internal variations in the climate system occurring over a 

range of timescales, causing additional EEI variability. Examples of internal variations include 

weather events, which vary from days to weeks, El-Niño Southern Oscillation (ENSO) events 

(Philander, 1983), which vary on interannual timescales, and the Pacific Decadal Oscillation 

(PDO; Mantua et al. 1997), which varies on decadal timescales. 

Since ~90% of the excess energy associated with EEI is stored in the ocean (von 

Schuckmann et al., 2020), fluctuations in Earth's top-of-atmosphere (TOA) net radiation and the 

ocean’s heating rate should be in phase with one another (Palmer et al., 2011). Indeed, prior 

comparisons of EEI variations derived from in situ measurements after 2005 and satellite 

observations of Earth’s net radiation track one another at interannual timescales (Johnson et al., 

2016). More recently, analyses of ocean temperature data have indicated that the rate of ocean 

heating has been steadily increasing (von Schuckmann et al., 2020), but a direct comparison with 

satellite observations is lacking. In addition, sea level rise from 1993–2017 has exhibited a 

statistically significant acceleration (Nerem et al., 2018). However, acceleration of melting ice on 
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land accounts for the majority of sea level rise acceleration in recent decades, leaving less than 

10% of the sea level acceleration signal attributed to increasing rates of ocean warming (Nerem et 

al., 2018).  

In this study, we perform a direct comparison between variations in EEI inferred from the 

Clouds and the Earth’s Radiant Energy System (CERES) and an in situ estimate of the observed 

ocean heat uptake over 0–2000 m combined with published estimates of energy uptake by the 

deeper ocean, lithosphere, cryosphere, and atmosphere. This comparison is made using annual 

estimates centered on mid-2005 (the year the Argo array of profiling floats achieved sparse near-

global coverage) through mid-2019. Of particular interest are how consistently these two observing 

systems capture interannual variations and the trend in EEI. This is followed by a partial radiative 

perturbation (PRP) analysis using additional data sources in order to identify what properties of 

the climate system are contributing to the observed trend in EEI.  

2. Data and Methods 

2.1 Satellite Data 

We use observational data from the CERES Energy Balanced and Filled (EBAF) Ed4.1 

product (Loeb et al., 2018a, Kato et al., 2018). EBAF provides monthly mean TOA and surface 

shortwave (SW), longwave (LW) and net radiative fluxes on a 11 grid along with imager-

derived cloud properties. Here we only consider the TOA fluxes derived from CERES SW and 

LW radiance measurements and solar irradiance measurements. Absorbed solar radiation is 

determined from the difference between spatially and temporally averaged monthly solar 

irradiances and reflected SW fluxes. The solar irradiances are determined from time-varying 

instantaneous total solar irradiance measurements from various sources (Loeb et al., 2018a). In our 

comparisons with in situ EEI, we consider the period 01/2005-12/2019.  
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As noted in detail in Loeb et al. (2018a), EEI is a small (~0.15%) residual of much larger 

radiative fluxes that are on the order of 340 W m-2. Satellite incoming and outgoing radiative fluxes 

are presently not at the level of accuracy required to resolve such a small difference in an absolute 

sense. However, satellite EEI are highly precise as the instruments are very stable. We thus adjust 

the satellite EEI to the in situ value by applying an offset to the satellite EEI such that its mean 

value over the 15-year period considered in this study is consistent with the mean in situ value. 

Use of this offset to anchor the satellite EEI to the in situ EEI does not affect the trends of either 

time series nor the correlation between them. Year-to-year variations and long-term trends in EEI 

from the satellite data are completely independent of those from the in situ data.  

2.2 In Situ Data 

An in situ estimate of planetary heat uptake for mid-2005 to mid-2019 is derived by an 

inventory of the rates of changes of energy stored in all components of the climate system. The 

primary contribution is from differences of overlapping annual 0–2000 m ocean heat content 

anomalies estimated at 6-monthly intervals from Argo float profiles. For example, the ocean 

heating rate estimate centered at mid-2005 is the estimate of ocean heat content anomaly for July 

2005 to June 2006 minus that for July 2004 to June 2005. 

The net heat uptake rate is estimated to be 0.77±0.06 W m-2 from mid-2005 to mid-2019. 

This rate is the sum of energy uptake rates of 0.62±0.05 W m-2 from the estimates in the ocean 

from 0–2000 m at 6-monthly intervals centered from mid-2005 through mid-2019, 0.062±0.038 

W m-2 from May 1992 to June 2011 in the deeper ocean (Johnson et al., 2019), 0.037±0.004 W 

m from mid-2005 to mid-2018 in the land, 0.031±0.006 W m-2 from mid-2005 to mid-2016 by 

melting ice, and 0.014±0.009 W m-2 from mid-2005 to mid-2018 by a warmer and moister 

atmosphere (von Schuckmann et al., 2020). 
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To determine year-to-year changes in planetary uptake, the 0–2000 m ocean heat uptake is 

from an estimate that uses local correlations between sea-surface height and ocean heat content 

anomalies to employ satellite altimetry data as a first guess at ocean heat content where (or when) 

in situ temperature data are sparse (Willis et al., 2003). For the period of study here, the fraction 

of the 0–2000 m ocean volume for which the first-guess estimate from the sea level and its 

correlation to ocean heat content is used in the absence of in situ ocean heat content data decreases 

from 23% for 2005 to about 8% after 2017 (following the methodology of Lyman and Johnson, 

2014). 

2.3 Partial Radiative Perturbation Analysis 

The PRP method (Wetherald and Manabe, 1988) provides a means of determining 

anomalies in TOA radiation associated with individual variables. Here we use the PRP method as 

implemented in Thorsen et al. (2018) to identify the variables that drive any observed trends in 

global and regional TOA fluxes.  

For non-cloud contributions, the effect on the flux (F) due to some perturbation x of 

variable x is computed using a centered finite difference by averaging the backward finite 

difference: 

𝛿𝐹∆𝑥,𝑀
𝑏 = 𝐹(𝑥, 𝑦1, … , 𝑦𝑁) − 𝐹(𝑥 − ∆𝑥, 𝑦1, … , 𝑦𝑁)  (1) 

with the forward finite difference: 

𝛿𝐹∆𝑥,𝑀
𝑓

= 𝐹(𝑥 + ∆𝑥, 𝑦1, … , 𝑦𝑁) − 𝐹(𝑥, 𝑦1, … , 𝑦𝑁)  (2) 

where x, y1,…,yN are gridded monthly mean input variables to radiative transfer model 

calculations, and x, ∆𝑦1, …, ∆𝑦𝑁 are gridded deseasonalized monthly mean anomalies of the 

input variables, and F is the flux calculated using the NASA Langley Fu–Liou radiative transfer 

model (Rose et al., 2013). Deseasonalized monthly mean anomalies are obtained from the 
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difference between the monthly mean of a variable and its corresponding monthly climatology, 

determined by averaging all years of the same month. Input variables include skin temperature, 

profiles of temperature and water vapor, surface albedo, aerosols, trace gases (ozone, carbon 

dioxide, methane, nitrous oxide, CFC-11, CFC-12, and HCFC-22), and incoming solar irradiance. 

The input variables are those used in the surface flux calculations in the CERES EBAF Ed4.1 

(Kato et al., 2018) consisting of adjusted input values provided in the CERES SYN1deg Ed4.1 

product that are “tuned” to force a match between computed and observed EBAF monthly mean 

all-sky and clear-sky TOA fluxes through an objective containment algorithm (Rose et al., 2013; 

Kato et al. 2018). To determine cloud contributions, the approach of Soden et al. (2008) is used: 

𝛿𝐹Δ𝐶 = Δ𝐶𝑅𝐸 − ∑[𝛿𝐹Δ𝑥𝑖
− 𝛿𝐹Δ𝑥𝑖

𝑜 ]

𝑖

                                                    (2) 

where Δ𝐶𝑅𝐸 is the anomaly in cloud radiative effect (CRE) from EBAF Ed4.1 observations, 𝛿𝐹Δ𝑥𝑖
 

is the all-sky flux perturbation due to an anomaly in variable 𝑥𝑖, and 𝐹∆𝑥𝑖

𝑜  is the clear-sky flux 

perturbation due to an anomaly in variable 𝑥𝑖. Based upon direct comparisons between trends 

determined from CERES Terra and CERES Aqua monthly CRE anomalies for 09/2002-03/2020, 

we estimate the trend uncertainty in CRE due to instrument drift to be < 0.085 W m-2 decade-1, 

which is a factor of 5 smaller than the trend uncertainty associated with CRE internal variability. 

As described in more detail in Thorsen et al. (2018), skin temperature, surface pressure, 

and profiles of temperature, water vapor, and ozone are from the Goddard Earth Observing System 

(GEOS), version 5.4.1, reanalysis (Rienecker et al., 2008) or the Atmospheric Infrared Sounder 

(AIRS), version 6 level 3, standard product (Chahine et al., 2006; Tian et al., 2013). Carbon dioxide 

concentrations are obtained from the AIRS, version 5 level 3, carbon dioxide product (Chahine et 

al., 2005). Other trace gases are obtained from NOAA Earth System Research Laboratory (ESRL) 

Global Monitoring Division (Dlugokencky et al., 2009; Conway et al., 1994). Aerosol optical 
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depths (at 0.55 m) and vertical distributions of seven aerosol types are from the Model of 

Atmospheric Transport and Chemistry (MATCH) Moderate Resolution Imaging 

Spectroradiometer (MODIS) aerosol assimilation product (Collins et al., 2001). Spectral surface 

albedos are determined using surface-type-based lookup tables (Jin et al., 2004; Rutan et al., 2009) 

for the spectral shapes that are scaled by the broadband surface albedo determined from the CERES 

surface albedo history (SAH) map (Rutan et al., 2009).  

3. Results 

3.1 Changes in Net TOA flux and Energy Uptake 

We previously estimated, from in situ annual estimates of energy uptake by Earth’s climate 

system, the EEI at 0.70±0.10 W m-2 (expressed here in terms of average heat uptake applied over 

Earth’s surface area with 5–95% confidence intervals) from mid-2005 to mid-2015 (Johnson et al., 

2016). We noted a 0.78 correlation between 0-1800 m year-to-year variations in ocean heating rate 

and satellite-based EEI from CERES. As detailed in section 2.2, here we update our calculations, 

extend them to 2000 m, and find a net heat uptake rate of 0.77±0.06 W m-2 from mid-2005 to mid-

2019 (Fig. 1). With the longer time-series, the rate has increased, and the uncertainty has reduced 

slightly. The correlation between year-to-year rates of a global 0–2000 m ocean heat uptake and 

CERES EEI is 0.70 for the mid-2005 to mid-2019 estimates. An F-test for equality of two variances 

indicates that we cannot reject the null hypothesis that the sample variances of the in situ and 

satellite EEI datasets are equal at the 0.05 significance level.  

A striking new result is that from the mid-2005 to mid-2019 estimates the trend of the 

energy flux for 0–2000 m ocean heat content anomaly (OHCA) is 0.43±0.40 W m-2 decade-1, and 

the trend for the net CERES TOA energy flux is 0.50±0.47 W m-2 decade-1 over that same time 

period (Fig. 1, dashed lines). The trend in the difference between the CERES and in-situ data is 
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0.068±0.29 W m-2 decade-1. Trends are determined using least squares linear regression and 

uncertainties in the trends correspond to 5-95% confidence intervals, accounting for 

autocorrelation in the data following the methodology of Santer et al. (2000). This remarkable 

increase in EEI is consistent between these two completely independent observational estimates. 

The linear trend of CERES implies a net EEI of 0.42±0.48 W m-2 in mid-2005 and 1.12±0.48 W 

m-2 in mid-2019. The in situ estimates yield a statistically indistinguishable result. 

 

Figure 1 Comparison of overlapping one-year estimates at 6-month intervals of net top-of-the-atmosphere annual 

energy flux from the CERES EBAF Ed4.1 product (solid red line) and an in situ observational estimate of uptake of 

energy by Earth climate system (solid blue line). Dashed lines correspond to least squares linear regression fits to the 

data. 

3.2 Attribution of EEI Trends 

We consider CERES TOA EEI trends for 09/2002-03/2020 and examine the underlying 

contributions from different atmospheric and surface variables available over that time period. 
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Trends are determined from a least-squares regression fit to deseasonalized monthly anomalies 

with uncertainties given as 5%-95% confidence intervals. 

For this period, the observations show a trend in net downward radiation of 0.410.22 W 

m decade-1 that is the result of the sum of a 0.650.17 W m decade-1 trend in absorbed solar 

radiation (ASR) and a 0.240.13 W m decade-1 trend in downward radiation due to an increase 

in OLR (Figs. 2a-c). TOA fluxes are defined positive downwards so that a positive anomaly/trend 

corresponds to a heat gain and a negative anomaly corresponds to a heat loss. As such, emitted 

thermal radiation (ETR) is defined positive downward and is therefore equal to OLR. The TOA 

anomalies are also consistent across CERES instruments on different satellite platforms (Loeb et 

al., 2018b). The ASR trend cannot be explained by changes in incoming solar radiation, as the 

trend in incoming solar flux is negligible (0.053 W m-2 decade-1). 

Our PRP results (Fig. 2d-f) consider contributions from changes in clouds, water vapor, 

combined contributions from trace gases and solar irradiance (labled as “Other”), surface albedo, 

aerosols, and combined contributions from skin temperature and profiles of temperature (labeled 

as “Temp”). We note that the aerosol contributions to TOA flux variations only include aerosol-

radiation interactions. Any change in TOA radiation due to aerosol-cloud interactions is implicitly 

included here as part of the cloud contribution. Most of the ASR trend is associated with cloud and 

surface albedo changes (Fig. 2d), which account for 62% and 27% of the ASR trend, respectively. 

Increasing global mean surface temperatures and cloud changes during the past two decades have 

contributed to an increase in thermal infrared emission to space, which is partly compensated for 

by increases in water vapor and trace gases (Fig. 2e). The overall trend in net radiation is a result 

of the sum of positive trends in contributions from clouds, water vapor, trace gases, surface albedo, 

and aerosols, which exceeds the negative contribution from temperature (Fig. 2f). 
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Figure 2 Global mean TOA flux anomalies and trends. Anomalies in (a) ASR, (b) ETR and (c) Net for 2002/09-

2020/03. Thin lines correspond to monthly anomalies, thick lines are 12-month running averages. Trends in (d) ASR, 

(e) ETR and (f) Net associated with contributions from changes in clouds, water vapor (WV), combined contributions 

from trace gases and solar irradiance (labeled as “Other”), surface albedo (SFC), aerosols (AER) and combined 

contributions from skin temperature and profiles of temperature (“Temp”). “Total” corresponds to the sum of the 

individual contributions. Error bars correspond to 5-95% confidence intervals determined using the methodology in 

Santer et al. (2000). Positive anomalies and trends correspond to heat gain, and negative to loss. ETR is defined 

positive downwards and is thus equal to –OLR.  

Regional trends in net radiation attributable to changes in clouds are strongly positive along 

the east Pacific Ocean, while more modest positive trends occur off of the U.S. east coast and over 

the Indian, Southern, and central equatorial Pacific Oceans (Fig. 3a). Net TOA flux trends due to 

surface albedo are greatest in areas of snow and sea-ice (Fig. 3b), where significant declines in 

coverage have been observed in recent decades (Alexander et al., 2013). Trends in net TOA flux 

due to temperature changes are negative almost everywhere (Fig. 3c), while water vapor trends are 

predominantly positive, particularly over land (Fig. 3e). Contributions from trace gases are 

uniform everywhere (Fig. 3d), whereas trends associated with aerosol changes are positive over 

China, USA and Europe, and negative over India (Fig. 3f). 
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Figure 3 Attribution of CERES net TOA flux trends for 2002/09-2020/03. Shown are trends due to changes in (a) 

clouds, (b) surface, (c) temperature, (d) combined contributions from trace gases and solar irradiance (labeled as 

“Other”), (e) water vapor, and (f) aerosols. Positive trends correspond to heat gain and negative to loss. Stippled 

areas fall outside the 5%-95% confidence interval. Numbers in parentheses correspond to global trends and 5%-95% 

confidence intervals in W m-2 decade-1. 

An additional factor that explains the trend in net TOA flux is the shift from a negative to 

a positive PDO index in 2014 (Fig. 4a). The PDO is a large-scale climate pattern associated with 

substantial shifts in sea-surface temperatures (SSTs) and clouds and has been previously linked to 

variability in the EEI as estimated at the TOA by satellite data (Loeb et al., 2018b). Following the 

shift in the sign of the PDO index in 2014, the Niño3.4 index peaked during the winter of 

2015/2016, reflecting a major El Niño event (Fig. 4b). SSTs started to rise in 2012 and have 
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remained above average through 2020 (Fig. 4c). Variations in SST closely track both the PDO and 

Niño3.4 indices, with correlation coefficients 0.80 and 0.72, respectively. In the positive phase of 

the PDO, SST increases are pronounced over the eastern Pacific Ocean, which causes a decrease 

in low cloud amount and an increase in ASR along the eastern Pacific Ocean (Loeb et al., 2018b). 

After 2014, the ASR trend shows a factor of 4 increase over that prior to 2014. An increase in 

thermal infrared emission to space slightly offsets the increase in ASR, so that the trend in net flux 

after 2014 is reduced to 2.5 times that prior to 2014.  

 

Figure 4 Time series of PDO, Niño3.4 and SST. (a) PDO Index, (b) Niño3.4 Index and (c) anomalies in SST. 

Vertical dashed line corresponds to shift in sign of PDO index from negative to positive in 2014. 
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4. Conclusions  

The excellent agreement between satellite and in situ trends in EEI obtained in this study 

demonstrates the benefits of having independent satellite TOA radiation observations and ocean 

heat content measurements for tracking changes in EEI. That both produce nearly identical results 

provides confidence that the trend towards an increased EEI reported here is robust, since it is 

unlikely to be due to artifacts in both observing systems. The positive trend in EEI is a result of 

combined changes in clouds, water vapor, trace gases, surface albedo, and aerosols, which exceed 

a negative contribution from increasing global mean temperatures. At global scale, the aerosol 

contribution is small compared to other contributions. This may be because only aerosol direct 

radiative effects are explicitly calculated as part of the aerosol contribution. Aerosol indirect 

effects are implicitly included as part of the cloud contribution to EEI—quantifying the aerosol 

indirect effect would require model simulations that can be run with and without aerosol-cloud 

interactions.  

Because EEI is such a fundamental property of the climate system, the implications of an 

increasing EEI trend are far reaching. A positive EEI is manifested as ‘symptoms’ such as global 

temperature rise, increased ocean warming, sea level rise, and intensification of the hydrological 

cycle (von Schuckmann et al., 2016). We can therefore expect even greater changes in climate in 

the coming decades if internal variability associated with the PDO remains the same. If the PDO 

were to reverse in the future, that reversal would likely act to decrease the rate of heat uptake. 

Further modeling studies are needed to fully understand the impact of the increasing trend in EEI 

on global and regional surface temperature, sea level rise, and changes to the hydrological cycle.  

Acknowledgements  
We thank the CERES science, algorithm, and data management teams and the NASA 

Science Mission Directorate for supporting this research. G.C.J. and J.M.L. are supported by the 

National Oceanic and Atmospheric Administration (NOAA) Global Ocean Monitoring and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Observations Program and NOAA Research. This is PMEL Contribution 5196 and JIMAR 

contribution number 20-400. CERES_EBAF Ed4.1 was obtained from the CERES ordering page 

at http://ceres.larc.nasa.gov/order_data.php. PDO index data was obtained from 

https://climexp.knmi.nl/data/ipdo.dat and accessed on November 3, 2020. Nino3.4 index data is 

from ESRL/NOAA obtained from https://psl.noaa.gov/data/correlation/nina34.data. Ocean heat 

content anomaly data used to determine the in situ EEI was obtained from 

https://oceans.pmel.noaa.gov. Partial radiative perturbation anomalies were obtained from 

https://ceres.larc.nasa.gov/ceres-prp-anomalies.php. We also thank Drs. Bjorn Stevens and George 

Datseris for their helpful comments.   

https://psl.noaa.gov/data/correlation/nina34.data


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

References 

Alexander, L. V. & and Co-Authors. Summary for Policymakers. in Climate Change 2013: The 

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report 

of the Intergovernmental Panel on Climate Change 3–29 (Cambridge University Press, 

2013). 

 

Chahine, M., Barnet, C., Olsen, E. T., Chen, L. & Maddy, E. (2005). On the determination of 

atmospheric minor gases by the method of vanishing partial derivatives with application to 

CO2. Geophysical Research Letters 32. 

 

Chahine, M. et al. (2006). AIRS: Improving weather forecasting and providing new data on 

greenhouse gases. Bulletin of the American Meteorological Society 87, 911–926. 

 

Collins, W. D., Rasch, P. J. Eaton, B. E.,  Khattatov, B. V., Lamarque, J.-F., & Zender, C. S. 

(2001). Simulating aerosols using a chemical transport model with assimilation of satellite 

aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 7313–7336, 

https://doi.org/10.1029/2000JD900507. 

 

Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A., & 

Zhang, N. (1994). Evidence for interannual variability of the carbon cycle from the 

National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics 

Laboratory Global Air Sampling Network. J. Geophys. Res., 99, 22 831–22 855, 

https://doi.org/ 10.1029/94JD01951. 

 

Dlugokencky, E. J. et al. (2009). Observational constraints on recent increases in the atmospheric 

CH4 burden. Geophys. Res. Lett. Geophysical Research Letters, 36, L18803, 

https://doi.org/10.1029/2009GL039780. 

 

IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. 

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. 

Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University 

Press, Cambridge, United Kingdom and New York, NY, USA. 

 

Jin, Z., Charlock, T. P., Smith, W. L. & Rutledge, K. (2004). A parameterization of ocean 

surface albedo. Geophysical Research Letters 31, L22301, 

https://doi.org/10.1029/2004GL021180. 

 

Johnson, G. C., Lyman, J. M. & Loeb, N. G. (2016). Improving estimates of Earth’s energy 

imbalance. Nature Climate Change 6, 639–640. 

 

Johnson, G. C. et al. (2019). Ocean heat content in the State of the Climate in 2018. Bull. Am. 

Meteorol. Soc. 100, S74–S76. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Kato, S. et al. (2018). Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy 

System (CERES) Energy Balanced and Filled (EBAF) Data Product. J. Climate 31, 4501–

4527. 

 

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., et al. (2018a). 

Clouds and the Earth's Radiant Energy System (CERES) energy balanced and filled 

(EBAF) top‐of‐atmosphere (TOA) Edition 4.0 data product. Journal of Climate, 31, 895–

918. https://doi.org/10.1175/JCLI‐D‐17‐0208.1. 

 

Loeb, N. G., Thorsen, T. J., Norris, J. R., Wang, H., & Su, W. (2018b). Changes in earth's energy 

budget during and after the “pause” in global warming: An observational perspective. 

MDPI Climate, 6, 62. https://doi.org/10.3390/cli6030062. 

 

Lyman, J. M. and G. C. Johnson. 2014. Estimating global ocean heat content changes in the 

upper 1800 m since 1950 and the influence of climatology choice. Journal of Climate, 27, 

1946-1958, doi:10.1175/ JCLI-D-12-00752.1. 

 

Mantua, N., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. (1997). A Pacific 

interdecadal climate oscillation with impacts on salmon production. Bulletin of the 

American Meteorological Society 78, 1069–1079. 

 

Nerem, R. S. et al. (2018). Climate-change-driven accelerated sea-level rise detected in the 

altimeter era. Proceedings of the National Academy of Sciences of the United States of 

America 115, 2022–2025. 

 

Palmer, M. D., McNeall, D. J. & Dunstone, N. J. (2011): Importance of the deep ocean for 

estimating decadal changes in Earth's radiation balance. Geophys. Res. Lett. 38, L13707. 

 

Philander, S. (1983). El Niño Southern Oscillation phenomena. Nature 302, 295–301. 

 

Rienecker, M. M. et al. (2008). The GEOS-5 Data Assimilation System—Documentation of 

versions 5.0.1, 5.1.0, and 5.2.0. 97 http://gmao.gsfc.nasa.gov/pubs/docs/ Rienecker369.pdf. 

 

Rose, F. G., Rutan, D. A., Charlock, T., Smith, G. L. & Kato, S. (2013). An Algorithm for the 

Constraining of Radiative Transfer Calculations to CERES-Observed Broadband Top-of-

Atmosphere Irradiance. Journal of Atmospheric and Oceanic Technology 30, 1091–1106. 

 

Rutan, D. et al. (2009). Development and assessment of broadband surface albedo from Clouds 

and the Earth’s Radiant Energy System Clouds and Radiation Swath data product. Journal 

of Geophysical Research 114. 

 

Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, 

and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-

average atmospheric temperature time series. J. Geophys. Res., 105, 7337-7356. 

 

https://doi.org/10.3390/cli6030062


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Soden, B. J., Held, I. M., Colman, R., Shell, K. M.,  Kiehl, J. T., & Shields, C.A. (2008). 

Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 3504–3520, 

https://doi.org/10.1175/2007JCLI2110.1. 

 

Thorsen, T. J., Kato, S., Loeb, N. G. & Rose, F. G. (2018). Observation-based decomposition of 

radiative perturbations and radiative kernels. J. Climate 31, 10039–10058. 

 

Tian, B. et al. (2013). Evaluating CMIP5 models using AIRS tropospheric air temperature and 

specific humidity climatology. J. Geophys. Res. Atmos. 118, 114–134. 

Tian, B., Fetzer, E. J., Kahn, B. H.,  Teixeira, J., Manning, E., & Hearty, T. (2013). Evaluating 

CMIP5 models using AIRS tropospheric air temperature and specific humidity 

climatology. J. Geophys. Res. Atmos., 118, 114–134, https://doi.org/10.1029/ 

2012JD018607. 

 

von Schuckmann, K. et al. (2016). An imperative to monitor Earth’s energy imbalance. Nature 

Climate Change 6, 138–144. 

 

von Schuckmann, K. et al. (2020). Heat stored in the Earth system: where does the energy go? 

Earth Syst. Sci. Data 12, 2013–2041. 

 

Wetherald, R. T., & Manabe, S., (1988). Cloud feedback processes in a general circulation 

model. J. Atmos. Sci., 45, 1397–1416, 

https://doi.org/10.1175/15200469(1988)045,1397:CFPIAG.2.0.CO;2. 

 

Willis, J. K., Roemmich, D. & Cornuelle, B. (2003). Combining altimetric height with 

broadscale profile data to estimate steric height, heat storage, subsurface temperature, and 

sea-surface temperature variability. Journal of Geophysical Research: Oceans 108. 

https://doi.org/10.1175/15200469(1988)045,1397:CFPIAG.2.0.CO;2



