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Anthropogenic forcing and response yield observed
positive trend in Earth’s energy imbalance
Shiv Priyam Raghuraman 1✉, David Paynter2 & V. Ramaswamy 1,2

The observed trend in Earth’s energy imbalance (TEEI), a measure of the acceleration of heat

uptake by the planet, is a fundamental indicator of perturbations to climate. Satellite

observations (2001–2020) reveal a significant positive globally-averaged TEEI of 0.38 ± 0.24

Wm−2decade−1, but the contributing drivers have yet to be understood. Using climate model

simulations, we show that it is exceptionally unlikely (<1% probability) that this trend can be

explained by internal variability. Instead, TEEI is achieved only upon accounting for the

increase in anthropogenic radiative forcing and the associated climate response. TEEI is

driven by a large decrease in reflected solar radiation and a small increase in emitted infrared

radiation. This is because recent changes in forcing and feedbacks are additive in the solar

spectrum, while being nearly offset by each other in the infrared. We conclude that the

satellite record provides clear evidence of a human-influenced climate system.
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E arth’s energy imbalance (EEI) is the difference between the
incoming solar radiation (S0), and the reflected shortwave
radiation (RSW) plus the outgoing longwave radiation

(OLR), at the top of the atmosphere1–3. Thus, EEI is a funda-
mental measure of the degree to which the Earth’s global climate
system is out of balance. A trend in EEI measures the acceleration
of heat uptake by the planet and hence is an indicator of per-
turbations to the coupled atmosphere-ocean-land-ice system4–8.
The mean EEI during 2005–2015 was estimated to be
0.71 ± 0.10Wm−2. Oceans store 90% of this excess heat9. Because
of this close relationship between EEI and ocean heating, EEI
trends have an important bearing on the warming of the global
climate system, sea-level rise, and marine health3. In addition,
understanding historical trends in EEI and its components
improves the modeling of the projections of future climate
change10,11, which in turn forms the basis for policymaking and
mitigation efforts12.

In the contemporary climate system, internal variability (ϵ),
effective radiative forcing (ΔERF), and the radiative response
(λΔTs) change EEI13–16. Thus, an anomaly in EEI can be
expressed as the sum of these three terms.

ΔEEI ¼ ΔERF þ λΔTs þ ϵ ð1Þ

Climate feedbacks and surface temperature are represented by
λ and ΔTs, respectively. Hereafter, the term radiative forcing
refers to the effective radiative forcing, which comprises external
forcings including natural (e.g., solar and volcanic) and anthro-
pogenic (e.g., well-mixed greenhouse gases and aerosols), as well
as rapid adjustments in response to the forcing13.

Satellite observations by Clouds and the Earth’s Radiant Energy
System Energy Balance and Filled (CERES EBAF) have provided
an uninterrupted two-decade-long time series (January
2001–December 2020) of EEI along with S0, RSW, and OLR,
allowing the study of TEEI17. While the mean EEI in CERES data
is adjusted to be consistent with in-situ ocean observations, the
interannual variations and trends observed by CERES are reliable,
as evidenced by the excellent agreement between the three
satellites CERES derives its data from refs. 17,18. While we know
that TEEI is influenced by internal variability in the climate
system, external forcings, and climate feedbacks, the extent of the
contribution from each has not been previously determined19–30.
In particular, due to the inherent noise in the Earth system, a
single observed 20-year time series of EEI is only one of many
possible time series that internal variability could produce31,32,
and therefore, it is imperative to quantify the contribution of
internal variability (ϵ) to TEEI.

We focus here on the investigation of the trend in EEI (TEEI).
In particular, the contributions to TEEI by the drivers of the OLR
and RSW trends, are an unexplored and unquantified area in the
explanation of the observed satellite record. We use Coupled
Model Intercomparison Project Phase 6 (CMIP6) experiments
and design a hierarchy of climate model experiments with the
Geophysical Fluid Dynamics Laboratory Coupled/Atmospheric
Model 4.0 (GFDL CM4/AM4)11,33 to better understand the
contributions of the three components of Eq. (1) to the CERES-
observed TEEI, thereby providing an assessment of the relative
importance of anthropogenically induced changes versus internal
variability changes. We show that anthropogenic forcing and the
associated climate response yield the observed positive TEEI.

Results
Trends in CERES observations. The trends in EEI (TEEI), RSW,
and OLR are computed by taking the linear fits of the ΔEEI, ΔRSW,
and ΔOLR time series, respectively. The observed ΔEEI time series
yields a significant positive trend of 0.38 ± 0.24Wm−2decade−1

(Figs. 1a, 2, 3a, 4 and Supplementary Fig. 1a; uncertainty given by
95% confidence interval (CI); hereafter all mentions of uncertainty
are given by CI unless otherwise specified). The 95% CI consists of
uncertainty due to observational error, as well as uncertainty due to
internal variability (latter quantified by standard error associated
with linear fit17,30,34,35) (see “Methods” section). Although there
is excellent agreement between the individual satellites CERES
derives its data from, there is, however, the potential for systematic
errors associated with the observed trend due to instrument drift.
We attach an estimate of 0.20Wm−2decade−1 (assuming a normal
distribution) to CERES trends, based on best realistic appraisals of
observational uncertainty (N. Loeb, CERES Science Project Lead,
personal communication)36–38.

The observed TEEI is nearly 40% of the mean EEI of 1.00 ±
0.17Wm−2 over this period. This TEEI is consistent with ocean
observations that showed an increase in ocean heat uptake over
the last two decades39,40. The trends for all latitudes have a
positive TEEI, which indicates an increase in radiative energy
across the system (Fig. 3 and Supplementary Fig. 2d). Nearly half
of the global trend comes from the tropics with the extra-tropics
and poles making up the other half of the global trend (Fig. 3a).
Radiatively, this trend is driven by large reductions in RSW,
compensated only by a relatively weaker increase in OLR
(Fig. 1b, c, Fig. 3b, c). Later, we will use AM4 model experiments
to understand the drivers of these trends. GFDL CM4/AM4 has
been shown to simulate radiation, clouds, and precipitation with
relatively small biases amongst CMIP6 models, when compared
to observations, (Figs. 18–19 in Boucher et al. 202041). GFDL
AM4 simulations of EEI, RSW, and OLR are validated against
CERES observations and are in excellent agreement (Supple-
mentary Fig. 3). Furthermore, as will be elaborated upon in the
next section, our GFDL CM4/AM4 estimates of internal
variability are robust when compared against CMIP6 estimates.

The observed trend in EEI is unexplained by internal varia-
bility. Our hierarchy of modeling experiments allows us to
investigate the possible contributions of trends in ΔERF, λΔTs,
and ϵ to TEEI. We compose five sets of estimates of the internal
variability (ϵ) using climate model simulations. For all five sets of
estimates, we calculate ϵ as the ±2σ range of 20-year trends across
the realizations. Two sets of estimates ϵ come from CMIP6 fully
coupled model simulations (which have freely evolving SSTs and
sea ice): one with forcing agents at 1850 levels (CMIP6 Control)
and historical forcing in another (CMIP6 Historical). These
provide estimates of ϵ in coupled models in the preindustrial era
(CM PI) and present-day (CM PD). Three sets of estimates of ϵ
come from atmosphere-only model experiments that we con-
ducted with the GFDL model (AM4 Control, AM4 PSST, AM4
PSST+ERF). Here, we investigate how sensitive ϵ is to repeated
sea surface temperature (SST) and sea ice boundary conditions
(AM4 Control), prescribed observed boundary conditions (AM4
PSST), and prescribed observed boundary conditions and pre-
scribed forcing agents (AM4 PSST+ERF).

In CMIP6 Control (1293 realizations and 47 models), we
compute ϵ as the ±2σ range of all 1293 trends. We also compute ϵ
for each of the 47 models and the multi-model mean results in the
same estimate of ϵ (Supplementary Table 1). As in CMIP6
Control, in CMIP6 Historical (142 realizations and 5 models), the
ϵ for all 142 trends is identical to the multi-model mean’s
estimate of ϵ (Supplementary Table 2).

In AM4 Control (100 realizations), the same SSTs and sea ice
are prescribed every year with forcing agents at 1850 levels (see
“Methods” section). This provides an estimate of ϵ in an
atmosphere model in the absence of changing forcing agents, as
well as changing SST and sea ice boundary conditions (AM PI).
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In AM4 PSST (20 realizations), each realization has fixed
radiative forcing, but prescribed SSTs and sea ice (AMIP PD
estimate of ϵ). Because forcing agents are held fixed at 2014 levels,
the trend in force is 0, i.e., ΔERF= 0 in Eq. 1 and hence the
ensemble mean provides the best estimate of the λΔTS trend. It is
important to note that this experiment contains imprints of a
forced system (i.e., λΔTS) since SSTs and sea ice are prescribed
but do not include the direct radiative impact of the forcing agent
changes (i.e., ΔERF= 0) (see “Methods” section).

In the final experiment (AM4 PSST+ERF–20 realizations), in
addition to prescribed SSTs and sea ice (observed), we also
prescribe the CMIP6 forcing time series (well-mixed greenhouse
gases concentrations, aerosol emissions, etc.) to obtain the sum of

the radiative forcing and response changes (see “Methods”
section). Similar to AM4 PSST, the ensemble mean provides
the best estimate of ΔERF+ λΔTS and the ±2σ range of the
twenty trends provides the fifth estimate of ϵ (another AMIP PD
estimate). It follows that the difference between AM4 PSST and
AM4 PSST+ERF ensemble-mean trends provide an estimate of
the trend due to the effective radiative forcing changes (ΔERF),
i.e., the impact of changing forcing agents on the radiation budget
(see “Methods” section).

The ϵ association with each of our 5 estimates is nearly identical
at ~±0.19Wm−2decade−1 over a 20-year period despite having
very different boundary conditions and forcing conditions
(CMIP6 Control ±0.19 Wm−2decade−1, CMIP6 Historical ±0.20

Fig. 1 Global-mean Earth’s radiation budget time series. Interannual anomalies (denoted by Δ) in a, Earth’s Energy Imbalance (EEI), b, reflected
shortwave radiation (RSW), c, outgoing longwave radiation (OLR) during 2001–2020. Blue and orange shading each represent the full range of twenty-
time series realizations in each ensemble. Positive (negative) values indicate more energy in the Earth system for EEI (RSW and OLR). Blue and orange
dashed lines represent ensemble mean trends. CERES= Clouds and the Earth’s Radiant Energy System satellite observations (black), AM4 PSST=
Prescribed Sea Surface Temperatures (SSTs) and sea ice with forcing agents held fixed at 2014 levels in Geophysical Fluid Dynamics Laboratory
Atmosphere Model 4 (AM4) (blue), and AM4 PSST+ERF= same as AM4 PSST but with effective radiative forcing changes (ERF; forcing agents varying)
(orange).
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Wm−2decade−1, AM4 Control ±0.17 Wm−2decade−1, AM4 PSST
±0.16 Wm−2decade−1, AM4 PSST+ERF ±0.16 Wm−2decade−1).
The similar ϵ value in trends is not seen in the amplitude of
interannual anomalies, where variability in ΔEEI increases with
the inclusion of SST variability (e.g., between AM4 Control and
CM4 Control (1 of the 47 models in the CMIP6 Control
ensemble)) (Supplementary Fig. 4). The larger amplitude inter-
annual fluctuations of opposite signs cancel in the computation of
a linear fit, yielding the same ϵ in EEI trends across experiments
with different boundary conditions. The fact that ϵ is not altered
between AM4 PSST and PSST+ERF ensembles, as well as between
the CMIP6 Control and CMIP6 Historical ensembles, suggests
that ϵ is independent of forcing and feedbacks.

We find that the CERES-observed TEEI lies outside the range
of trends driven by internal variability alone using two different
uncertainty metrics. In the first metric, we compare CERES
(with its observational uncertainty), a single realization, to the
±2σ range of trends (ϵ). This ϵ is the model ensemble-generated
uncertainty due to internal variability (Fig. 2 and Fig. 3a). The
CERES TEEI (0.38 ± 0.20Wm−2decade−1; uncertainty given by
observational uncertainty) lies outside of our estimates of
internal variability (ϵ ~ ± 0.19 Wm−2decade−1) no matter
which of our five experiment ensembles we estimate it from
(Fig. 2). Although there is a small overlap between the lower
end of the CERES observational range and max(ϵ) in Fig. 2, the
probability that CERES has a low trend due to drift and that
there was a high trend due to internal variability in the same
two-decade period is extremely small (<1% probability) (see
“Methods” section). Thus, the probability that internal
variability could have caused the observed trend, even in the
presence of large observational uncertainty, is exceptionally
unlikely42.

The value of ϵ is robust across 47 different CMIP6 Control
models (Supplementary Table 1). One of the 47 models, GFDL
CM4 Control (ϵ= ±0.20 Wm−2decade−1), is representative of
the CMIP6 Control ensemble and is further analyzed in Fig. 3
alongside the GFDL AM4 results to maintain consistency in the
hierarchy of GFDL modeling experiments. We also tested multi-
millennial control simulations in two older generation GFDL
models and found similar values of ϵ (ESM2M Control and CM3
Control).

The second uncertainty metric compares the 95% CI around
the mean and is a common method that has been employed in
previous studies. To be consistent with the 95% CI uncertainty
estimate attached to CERES, we compute the 95% CI for
each model ensemble’s mean. The CERES TEEI with its 95% CI
(0.38 ± 0.24Wm−2decade−2) is (1) greater than 0 and (2) greater
than the AM4 Control and CMIP6 Control ensemble means with
their 95% CI uncertainty estimates (0.01 ± 0.02Wm−2decade−1

and 0.00 ± 0.01Wm−2decade−1, respectively) (Fig. 4, Supple-
mentary Fig. 1, Supplementary Table 1). This result again implies
that internal variability is extremely unlikely to have caused the
observed TEEI.

We note that comparing the CERES TEEI with its 95% CI
(second metric) to the ±2σ range of trends (ϵ; first metric) would
overestimate the uncertainty since CERES’s standard error
component of the 95% CI uncertainty is also a measure of
the range of trends that could have been obtained by variability in
the climate system. In fact, an alternative 95% CI for CERES could
be to replace the standard error component with the modeled
internal variability as a broader estimate of internal variability
uncertainty (Fig. 4). Hereafter, when we compare CERES with the
model ensembles, we will follow only one of the two metrics at any
given time: CERES (one realization) with observational uncer-
tainty is compared to ±2σ range of trends (ϵ) (Fig. 2, Fig. 3) and
CERES with 95% CI is compared to the model ensemble mean
with 95% CI (Fig. 4, Supplementary Fig. 1). These results imply
that it is exceptionally unlikely that internal variability caused the
observed TEEI and therefore implies that trends in radiative
forcing and the associated climate response caused the
observed TEEI.

Decomposition of EEI into radiative forcing and response
trends. Since ϵ comprises a range of trends in EEI due to internal
variability, the value of ϵ, ±0.19Wm−2decade−1, informs us of
the estimated contribution internal variability can make to TEEI.
Following Eq. 1, this would imply that the CERES TEEI contains
a positive ΔERF+ λΔTs trend, but with a large range of 0.11–0.65
Wm−2decade−1 (95% CI range using ϵ instead of standard error
in the internal variability component of uncertainty; Fig. 4). The
lower bound of this range represents the minimum contribution

Fig. 2 Global-mean observed trend in Earth’s energy imbalance (EEI) is unexplained by internal variability. Each model ensemble’s estimate of
maximum trends in ΔEEI due to internal variability (ϵ) is plotted. See Supplementary Tables 1–2 for the number of realizations (n; two-decade periods
trends) for each model in Coupled Model Intercomparison Project Phase 6 (CMIP6) Control and CMIP6 Historical ensembles. Gray shading represents
observational uncertainty. Note that although there is a small overlap between the high trends due to internal variability and the low trends due to
observational uncertainty, the probability that both events happen in the same two-decade period is less than 1%; see text and see “Methods” section for
details. CERES=Clouds and the Earth’s Radiant Energy System satellite observations (black), AM4 PSST= Prescribed Sea Surface Temperatures (SSTs)
and sea ice with forcing agents held fixed at 2014 levels in Geophysical Fluid Dynamics Laboratory Atmosphere Model 4 (AM4), and AM4 PSST+ERF=
same as AM4 PSST but with effective radiative forcing changes (ERF; forcing agents varying).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24544-4

4 NATURE COMMUNICATIONS |         (2021) 12:4577 | https://doi.org/10.1038/s41467-021-24544-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


by anthropogenic forcing and response. Conversely, the upper
bound of this range represents the maximum contribution by
anthropogenic forcing and response. Indeed, we find that the
ensemble mean estimate of AM4 PSST+ERF of 0.19 ± 0.04
Wm−2decade−1, is consistent with this range (Fig. 4, Supple-
mentary Fig. 1a). All CMIP6 Historical coupled models analyzed
in this study (only large ensembles were considered) lie in the
CERES 95% CI range, implying that the anthropogenic forcing
and response in coupled and atmosphere-only models yields the

observed positive trend (Fig. 4, Supplementary Table 2). We note
that, while accounting for observational trend uncertainties, a
lesser estimate of the satellite-related-trend-uncertainty than used
here would further elevate the role that radiative forcing and
feedbacks have played in the TEEI.

The AM4 experiments show that the positive trend can be
attributed to a positive ΔERF trend (0.49Wm−2decade−1; Table 1)
overcoming a negative trend in λΔTs (−0.30Wm−2decade−1;
Fig. 3a, Supplementary Fig. 1a). This forcing trend of AM4 is in

Fig. 3 Regional radiative trends in Clouds and the Earth’s Radiant Energy System (CERES) observations and a hierarchy of Geophysical Fluid
Dynamics Laboratory (GFDL) climate model experiments. a Earth’s energy imbalance (EEI). b, Same as a, but for reflected shortwave radiation (RSW).
c Same as a, but for outgoing longwave radiation (OLR). Positive EEI indicates more energy in the system while positive RSW and OLR indicate less energy.
Values are relative to the global mean, i.e., area-weighted. Tropics (30°S–30°N), northern extra-tropics (30°N-60°N), southern extra-tropics (30°S–60°S),
and poles (60°S–90°S and 60°N–90°N). ±2σ range marked by dashes. For models, this is the range of radiative trends due to internal variability (ϵ). For
the observations, this is the range due to observational uncertainty. See Supplementary Fig. 1 for the equivalent figures but with 95% confidence intervals
as uncertainty estimates and text for details. CERES’s global trend in ΔEEI exceeds control experiments’ ϵ (see text for details and Fig. 2) and only lies in the
realm of the experiment with prescribed SST and sea ice (observed) and effective radiative forcing (AM4 PSST+ERF). See Eq. 1 and text for details on
λΔTs(blue) and λΔTs+ΔERF(orange) (Δ represents anomalies). CM4=GFDL Coupled Model 4 (CM4 Control given by dark gray) and AM4=GFDL
Atmosphere Model 4 (AM4 Control given by light gray).
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excellent agreement with other CMIP6 Radiative Forcing Model-
ing Intercomparison Project’s (RFMIP43) model trend estimates
(MMM 0.50 ± 0.06Wm−2decade−1; Supplementary Table 3). We
have performed further experiments using the RFMIP GFDL AM4
ensemble to break down the trends in ΔERF due to anthropogenic
well-mixed greenhouse gases (0.40 ± 0.10Wm−2decade−1),
anthropogenic aerosols (0.12 ± 0.10Wm−2decade−1), and natural
(−0.03 ± 0.10Wm−2decade−1) (Table 1). Since the only notable
positive trends come from the direct impact of anthropogenic
radiative forcing, we conclude that the positive trends in CERES
would not be possible without it. In the following section, we
decompose TEEI into RSW and OLR trends and investigate their
ΔERF and λΔTS components.

Decomposition of OLR and RSW into radiative forcing and
response trends. The CERES-observed trend in OLR is found to
be 0.28 ± 0.22Wm−2decade−1 (Fig. 3c, Supplementary Fig. 1c;
radiation leaving Earth is positive for ΔOLR and ΔRSW). Our
modeling experiments show that this is due to a near offset
between a positive feedback component and a negative forcing
component. When forcing is fixed, ΔOLR emitted over this period
is 0.39 ± 0.02Wm−2decade−1 (AM4 PSST; Fig. 3c, Supplementary
Fig. 1c). AM4 PSST’s prescribed boundary conditions use observed

SSTs that are increasing over this time period (observed global
mean surface temperature trend of 0.23 ± 0.02 K/decade (NASA
GISTEMP44)) while well-mixed greenhouse gas concentrations are
held fixed at 2014 levels, resulting in more infrared radiation
emitted by Earth. This damping of the climate system in the
absence of forcing is consistent with the dominance of the Planck
and lapse rate feedbacks that alter OLR, which is Earth’s primary
way to lose energy to space.

When well-mixed greenhouse gas concentrations and other
forcing agents are allowed to vary, the OLR trend decreases to
0.13 ± 0.02Wm−2decade−1 (AM4 PSST+ERF, Fig. 3c, Supplemen-
tary Fig. 1c). This amounts to a trend in forcing of
−0.26Wm−2decade−1, entirely coming from well-mixed greenhouse
gas changes (Table 1), which is consistent with previous work that
studied trends in the greenhouse effect45. The reduction in OLR due
to globe-wide increasing concentrations of well-mixed greenhouse
gases is seen at most latitudes (Fig. 3c, Supplementary Figs. 1c, 5, 6).
This is because CO2 and other greenhouse gases’ radiative trapping
occurs in the infrared spectrum and acts to counter the loss of energy
via the aforementioned feedbacks.

The CERES-observed trend in RSW is −0.70 ±
0.23Wm−2decade−1 (Fig. 3b, Supplementary Fig. 1b). In compar-
ison, the mean RSW trend of the AM4 PSST+ERF ensemble
is −0.37 ± 0.03Wm−2decade−1. The ΔERF component,

Fig. 4 Global-mean observed trend in Earth’s energy imbalance (EEI) obtained by anthropogenic forcing and the associated climate response. Trends
in ΔEEI (TEEI) with 95% confidence intervals (CI) (Δ represents anomalies). Dashed lines indicate Clouds and the Earth’s Radiant Energy System (CERES)
TEEI’s 95% CI derived from observational uncertainty and standard error of linear fit (internal variability). Shading indicates CERES TEEI’s 95% CI with internal
variability uncertainty estimated from model-derived ϵ. The lower end indicates the minimum contribution by anthropogenic forcing and the associated
climate response (ΔERF + λΔTs; see Eq. 1) to CERES TEEI. Conversely, the upper end indicates the maximum anthropogenic contribution to CERES TEEI.
Geophysical Fluid Dynamics Laboratory Atmosphere Model 4 (GFDL AM4) ‘Historical’ value represented by the experiment with prescribed sea surface
temperatures and sea ice and effective radiative forcing changes (forcing agents varying) (AM4 PSST+ERF). Control experiments denoted by light gray filled
circles. Historical experiments denoted by green filled circles. CanESM5=Canadian Earth System Model version 5, MIROC6=Model for Interdisciplinary
Research on Climate version 6, IPSL-CM6A-LR= Institut Pierre-Simon Laplace-Climate Model 6-Low Resolution, ACCESS-ESM1.5=Australian Community
Climate and Earth-System Simulator Earth System Model Version 1.5, GISS-E2.1-G=Goddard Institute for Space Studies (GISS) climate model.

Table 1 Decomposition of effective radiative forcing trends into greenhouse gas, aerosol, and natural radiative forcing
contributions during 2001-2020.

All forcing All forcing GHG only AER only NAT only

Effective radiative forcing trend
(Wm−2 decade−1)

AM4 ERF AM4 RFMIP AM4 RFMIP AM4 RFMIP AM4 RFMIP

ΔEEI 0.49 ± 0.05 0.54 ± 0.10 0.40 ± 0.10 0.12 ± 0.10 −0.03 ± 0.10
ΔRSW −0.28 ± 0.03 −0.31 ± 0.07 −0.12 ± 0.07 −0.19 ± 0.07 0.07 ± 0.07
ΔOLR −0.26 ± 0.03 −0.29 ± 0.05 −0.27 ± 0.05 0.07 ± 0.05 −0.10 ± 0.05

Uncertainty gave by 95% confidence intervals. Positive values of Earth’s energy imbalance (EEI) trends and negative values of reflected shortwave radiation (RSW) and outgoing longwave radiation
(OLR) trends indicate more energy into the system, respectively.
RFMIP Radiative Forcing Intercomparison Project, GHG greenhouse gas only, AER aerosols only, NAT natural forcing agents only.
Trends computed for anomalies time series (Δ).
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−0.28Wm−2decade−1, dominates this reduction in reflection. The
λΔTS component, −0.09Wm−2decade−1 acts to supplement this
decrease in reflection and is discussed in detail later in this section.

Using the RFMIP GFDL AM4 ensemble, we find a near-equal
contribution by aerosol forcing (−0.19Wm−2decade−1) and
greenhouse gas forcing (−0.12Wm−2decade−1) in reducing
reflection of shortwave radiation (Table 1). The aerosol forcing
contributed to the RSW forcing component acts primarily in the
northern extra-tropics (Fig. 3b and Supplementary Fig. 7e). We find
a reduction in RSW in the northern extra-tropics consistent with an
aerosol drawdown during this period over the northern extra-
tropics (USA and Europe) (Fig. 3b, Supplementary Figs. 7–9)46,47.
As aerosols decrease, there is less reflection of sunlight from the
aerosols (direct effect) and from the clouds which have smaller
optical depths and liquid water paths (indirect effect)48. Indeed, we
find that satellite observations from MODIS49 show a decrease in
liquid water path over the northern extra-tropics, consistent with
AM4 PSST+ERF liquid water path trends for that region
(Supplementary Fig. 7c). The northern midlatitude aerosol forcing
outweighs land-use forcing changes (Supplementary Fig. 7d, f).
However, there is uncertainty regarding the CMIP6 aerosol
emissions, which are used in AM4 PSST+ERF47.

The greenhouse gas forcing contribution to the ΔERF
component of the RSW trend manifests as rapid cloud
adjustments. Increasing greenhouse gases cause a decrease in
longwave cooling and an increase in atmospheric absorption
which enhances tropospheric heating50–54. This reduces the
relative humidity and hence reduces cloud cover50,51. These
rapid cloud adjustments are independent of the λΔTS component
over the 20-year period discussed below, which is tied to surface
temperature change. Together, approximately half of the
−0.28Wm−2decade−1 AM4-estimated RSW forcing trend is
due to cloud changes (Supplementary Table 4).

Half of the AM4 PSST RSW trend (λΔTS component) comes from
the tropics (Fig. 3b, Supplementary Fig. 1b, Supplementary Table 5).
This decrease in tropical reflection of solar radiation arises solely
from trends in the prescribed SSTs. However, we do not find that the
so-called pattern effect55–65, the phenomenon wherein East-West
SST gradients in the tropical Pacific modulates radiation and
feedbacks, can explain this RSW λΔTs trend (see “Methods” section).
Two different metrics of Pacific SST gradients59,66 show equal East
Pacific and West Pacific warming trends, i.e., a neutral pattern, yet
there is a negative modeled tropical RSW trend. Furthermore, CERES
observations show a much stronger tropical RSW trend (Supple-
mentary Figs. 10–11, Supplementary Table 6).

The other half of the AM4 PSST RSW trend comes from the
northern extra-tropics. This is dominated by the clear-sky
component (Supplementary Table 5) and is most likely due to
land-use changes (Supplementary Fig. 7f). Over the poles and
southern extra-tropics, we find considerable disagreement between
CERES observations and the model (Fig. 3b). In the polar regions,
Arctic and Antarctic sea ice is decreasing in CERES observations,
which decreases reflection (Fig. 3b, Supplementary Figs. 7b, 12a).
However, we find that the model, driven with AMIP boundary
conditions, shows Antarctic sea ice to be increasing over this time
period, leading to a smaller decrease in polar RSW in AM4 PSST.
The AMIP sea ice and observation sea ice discrepancy is consistent
with previous studies35,67. In the southern extra-tropics, the
Southern Ocean cloud fraction is decreasing in CERES-MODIS
observations while increasing in the model (Supplementary
Fig. 12b, 13), which leads to more reflection in the model. After
accounting for the polar, southern extra-tropical, and tropical
discrepancies (−0.33Wm−2decade−1), the model could match the
observed global reduction in RSW. The model-observation
discrepancies and uncertainty are further examined in the
Discussion section.

Discussion
The satellite-observed positive EEI trend over the 2001–2020
period is exceptionally unlikely (<1% probability)42 to be
explained by internal variability, which we estimate across 47
CMIP6 coupled models in preindustrial conditions, 5 CMIP6
coupled models in present-day conditions, and a hierarchy of
GFDL atmosphere-only model experiments in preindustrial and
present-day conditions. These results imply that the observed EEI
trend meets the criteria for detection above internal variability
and the simulated AM4 PSST+ERF trend also meets the criteria
for emergence above internal variability (Figs. 2–3, Supplemen-
tary Fig. 14)31,68. Only by accounting for the temporal changes in
anthropogenic forcing agents and the associated climate response
in CMIP6 Historical coupled models and GFDL AM4 PSST+ERF
was it possible to achieve trends that are in agreement with
observations (Fig. 4). Thus, we conclude that the observed EEI
trend is attributable to anthropogenic forcing and response69.

The observed positive EEI trend shows that the heat uptake by
the Earth system has accelerated over the past two decades. This
occurred because Earth has gained energy at a faster rate than it
has lost (ΔERF > λΔTs). Because of the role internal variability can
play at short timescales, this rate of gain need not have sig-
nificantly outpaced the rate of loss, i.e., display a detectable
positive EEI trend. For example, Supplementary Fig. 15 shows that
only by 2018 does the CERES-observed EEI trend emerge above
internal variability, despite a positive ERF trend leading up to 2018
(Supplementary Fig. 16). This shows the value of satellite obser-
vations maintaining a climate data record, and further extending it
will help reduce the uncertainty due to internal variability.

Radiatively, the significant positive trend in observed EEI is
driven by a −0.70 ± 0.23Wm−2decade−1 trend in RSW and a
0.28 ± 0.22Wm−2decade−1 trend in OLR. While the dominance
of the RSW component of the EEI trend has been shown in future
projections of climate change, our work shows, with direct
observations, that this is already happening in the current
climate19,70.

Our study provides estimates of model uncertainty due to
internal variability (ϵ). When observations and the model do not
agree even after accounting for internal variability, model biases
could be the cause of the discrepancy. For example, our modeled
RSW and OLR trends are mostly consistent with the observed
trends, however, the model also shows some inconsistencies with
the observations. First, the model reflects more sunlight than
observations in the tropics during this period. This could arise
from a lack of aerosol decrease in the tropics, weak greenhouse
gas rapid cloud adjustment, or weak response to the underlying
SST pattern. Second, in the extra-tropics and poles, the model
displays more reflection of sunlight than observations, arising
from discrepancies between observations and the model’s land-
use changes, excessive aerosol drawdown over China, CMIP6
prescribed sea-ice boundary conditions, and modeled Southern
Ocean cloud cover. Third, the model traps more infrared radia-
tion than observations due to the weaker modeled tropical
longwave cloud radiative effect trend (Supplementary Figs. 1, 5–8,
12–13, Supplementary Table 7).

These results imply that, first, we need to understand why the
2001–2020 SST warming pattern caused tropical RSW to decrease
(AM4 PSST). Existing tropical pattern effect theories only help
explain monthly-annual variations in RSW but cannot explain
the decadal trend (Supplementary Figs. 10–11, Supplementary
Table 6; see “Methods” section). Second, aerosol-radiation
interactions over the tropics (which may have contributed to
the observed tropical RSW decrease) and China need to be better
understood. Despite evidence for decreasing aerosol emissions
and aerosol optical depths in observations in China in the latter
half of this period46,47, RSW increased in CERES instead of an
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expected decrease (Supplementary Fig. 8a). Furthermore, under-
standing why GFDL AM4 and potentially other CMIP6 models47

show a decrease in RSW, despite CMIP6-prescribed increasing
aerosol emissions in China, is an avenue for further exploration.
Third, we need to be cautious in using CMIP6 sea-ice data.
Fourth, we need a better comprehension of the impact of clouds
on Earth’s radiation budget on decadal time scales. Finally, we
find that CMIP6 Historical coupled models with historical forcing
show similar trends to AM4 PSST+ERF, but both lie at the lower
end of the CERES range (Fig. 4). Future work could aim to
explain whether this arises because of weaker forcing or a strong
radiative response or both in models during this 2001–2020
period.

Methods
ΔEEI represents monthly anomalies and is calculated by subtracting the long-term
monthly mean EEI of the period, from each year’s month. For example,
ΔEEIJan;2020 ¼ EEIJan;2020 � EEIJan;2001�2020. Trends were then calculated by
obtaining the slope of the linear fit through the anomalies time series. Regional
values were calculated relative to the global mean, i.e., area-weighted: Poles (90°S
−60°S and 60°N−90°N; 13.4% of Earth’s area), Southern Extra-Tropics (60°S
−30°S; 18.3% of Earth’s area), Northern Extra-Tropics (30°N−60°N; 18.3% of
Earth’s area), and Tropics (30°S−30°N; 50% of Earth’s area). ϵ is the ±2σ range of
trends in each model ensemble experiment.

Models. In the CMIP6 Control experiments, boundary conditions were allowed to
vary in multi-century piControl simulations using coupled models with forcing
fixed at 1850 levels. We analyzed 47 CMIP6 coupled models’ piControl simulations
to estimate ϵ. We use 1 realization (r1i1p1f1) per model and slice the piControl
time series into consecutive, non-overlapping 20-year periods. The ±2σ spread of
all these trends (1293 realizations) is our estimate of ϵ for CMIP6 Control. Fur-
thermore, for each model, we calculate ϵ. The multi-model mean ϵ is identical to
the ϵ obtained by computing the ±2σ range for all 1293 trends (Supplementary
Table 1).

Apart from GFDL CM4 Control, none of the models had significant drift, so we
use the full-time series available. In the case of CM4 Control, 1 of the 47 models,
the simulation had 650 years of data, but we exclude the first 20 years due to drift
(Supplementary Fig. 17a–c). The trend through the remaining years’ time series is
negligible, −0.002 ± 0.007Wm−2century−1, implying that it can be used for the
analysis. The mean EEI (TOA imbalance) is 0.28Wm−2. See Supplementary
Table 1 for model names, number of periods (i.e., realizations), trends, and ϵ
values. In addition, we used multimillennial simulations71 from two older
generations of GFDL models (ESM2M and CM3) to study the trends in EEI over
hundreds of consecutive 20-year periods.

In CMIP6 Historical, we analyzed the 5 available CMIP6 coupled models that
contained at least 10 realizations per model. This provided us with single model
large ensembles with historical forcing (till 2014) and SSP2-4.5 forcing (2015–2020)
in coupled models during the CERES era period January 2001–December 2020. See
Supplementary Table 2 for model names, number of realizations, trends, and ϵ
values. CanESM5 had a 25-member ensemble with ‘p1’ physics and another 25-
member ensemble with ‘p2’ physics72. Both of these ensembles individually fall into
the CERES 95% CI range in Fig. 4. GISS-E2.1-G had a 10-member ensemble with
‘p1f2’ configuration, a 5-member ensemble with ‘p3f1’ configuration, and a 4-
member ensemble with ‘p5f1’ configuration73,74. Each of these ensembles falls into
the CERES range in Fig. 4 (see also Supplementary Table 2).

The AM4 Control experiment was conducted by providing GFDL AM4 with
the SST pattern of a GFDL CM4 piControl simulation (CM4 Control). This SST
pattern was then repeated year after year for 200 years as the boundary condition
for GFDL AM4. We then randomly picked years from the 200-year EEI time series
and made a 2000-year time series (bootstrap). Next, 100 20-year periods
(Supplementary Fig. 17d) are sampled consecutively. These 100 20-year periods
provide 100 linear trends. The ±2σ spread of these 100 trends is our estimate of ϵ
for AM4 Control. Forcing was fixed at 1850 levels.

In AM4 Fixed Forcing, we prescribed observed SSTs and sea ice over 2001–2020
in GFDL AM4 (AMIP-style75). These AMIP simulations used the monthly SSTs
and sea ice concentrations prepared for the CMIP6 historical AMIP
simulations75,76, which were extended to December 2020 using the NOAA
Optimum Interpolation (OI) SST V2 data77. Further details regarding the
prescription and forcing datasets are listed in the GFDL AM4 model description
(Appendix A)11. We created an initial condition large ensemble31,68,78 with 20
realizations of Earth over this time period with forcing agents fixed at 2014 levels.
The ±2σ spread of these 20 trends provides our estimate of ϵ for AM4 PSST (units:
Wm−2 decade−1). The year 2014 is used since it marks the end of CMIP6 emission
prescriptions. Since we are studying the trends in an interannual time series, the
particular year at which we fix forcing agents does not matter. It is important to
note that although forcing was fixed, the boundary conditions were already forced

since they were prescribed. The warming trend has an impact on the top-of-
atmosphere radiation budget, e.g., OLR increase.

Finally, in AM4 PSST+ERF, we repeated the AM4 PSST experiment but
allowed forcing agents to vary over this time period, producing another 20
realizations. The ±2σ spread of these 20 trends provides our estimate of ϵ for AM4
PSST+ERF. Forcing agents’ variations follow CMIP6 emissions until 2014 and
scenario SSP2-4.5 thereafter79. Each realization in AM4 PSST and AM4 PSST
+ERF had the same boundary conditions but slightly different initial conditions,
which yielded the so-called butterfly effect80,81 that caused the climate state in each
realization to be different from one another.

The decomposition of the effective radiative forcing trends over this period were
calculated using the GFDL AM4 3-member ensemble in the Radiative Forcing
Modeling Intercomparison Project (RFMIP). There were four temporal evolutions
with different forcing agents: greenhouse gas only, aerosol only, natural forcings,
and all forcings. These experiments were prescribed with AM4 Control boundary
conditions (SST and sea ice) and forcing agents were allowed to vary. Uncertainties
given in Table 1 were calculated by using the standard deviation (σ) of the trends in
the AM4 Control experiment instead of using the small 3-member ensemble of the
RFMIP experiments in order to get a more representative uncertainty. Differences
in forcing estimated from (AM4 PSST+ERF−AM4 PSST) and RFMIP are
negligible because they both use the same CMIP6 forcing-agent time series and
only differ in boundary conditions (fixed SSTs for RFMIP and varying SSTs for
AM4 PSST+ERF) (Table 1).

Observations. We used observations of top-of-atmosphere radiation from the
Clouds and the Earth’s Radiant Energy System Energy Balance and Filled (CERES
EBAF Ed4.1). MODIS data from January 2001–July 2002 was obtained using the
Terra platform alone and data from July 2002-December 2020 was obtained using
an average of Terra and Aqua platforms. MODIS data poleward of 55° was ignored
due to insufficient coverage (<19% of Earth’s surface area). MODIS LWP data is
pixel-weighted.

We omit 2000 in the analysis because CERES does not provide 2000’s January
and February data. To compare complete years (Jan-Dec), we begin with 2001. The
significant positive trend in EEI in CERES EBAF 4.1 was not seen in an earlier data
product version: CERES EBAF Ed2.8. This is because there was a smaller reduction
in RSW in Ed2.8. This was mostly due to diurnal corrections used in Ed2.8 and not
because of calibration differences17,37.

CERES observational uncertainty in the absolute magnitude of fluxes arises
from instrument calibration uncertainty, EBAF diurnal correction, and radiance-
to-flux conversion17. However, since our study focuses on decadal trends,
observational uncertainty due to the stability of the CERES instruments is more
important than absolute accuracy.

Although CERES is highly stable, systematic errors in observational uncertainties
in decadal trends could still arise and so we assume a 0.20Wm−2 decade−1

observational uncertainty in EEI, RSW, and OLR at every grid point. The total
probability that internal variability could have caused the global-mean observed
TEEI, even in the presence of large observational uncertainty, is less than 1%
because the right-end tail of the internal variability probability distribution is being
multiplied by the left-end tail of an assumed normal distribution of the
observational uncertainty. Moreover, this result is insensitive to the probability
density function (normal distribution, left-skew normal distribution, or uniform
distribution) that is assumed for the observational uncertainty. The two probabilities
can be multiplied to obtain the total probability because they are independent
events. Further uncertainty details in CERES and MODIS are outlined in their data
product manuscripts17,49.

Confidence intervals. 95% confidence intervals are listed for observations, as well
as for model ensembles. For observations (only 1 realization), this 95%
CI ¼ 1:96 ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2Obs: þ σ2Var:
p

, where 2σObs.= 0.2 Wm−2 decade−1 and σVar. is the
standard error associated with the linear fit82. The standard-error derived
uncertainty17,30,34,35 in CERES, an uncertainty that represents internal variability
uncertainty, is similar in magnitude to the model-generated internal variability
uncertainty (ϵ).

Therefore, we also apply the model-derived ϵ as another way of estimating the

95% CI on CERES TEEI ± 1:96 ´
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2Obs:þ ϵ
2ð Þ2

p

ffiffi

1
p

� �

. These uncertainties (σObs. and

σVar.) are added in quadrature because they are independent uncertainties. For
model ensembles, which contain multiple realizations, we make use of the spread in
trends (linear fits) in the ensemble. The model ensemble mean confidence interval
is calculated as: 1:96 ´ σ

ffiffi

n
p � ϵ

ffiffi

n
p , where σ is one standard deviation of trends in the

ensemble and n is the number of realizations in the ensemble. Therefore, the model
ensembles in Supplementary Fig. 1 are identical to Fig. 3 but scaled by 1

ffiffi

n
p .

Pattern effect. Past work has suggested that East–West SST gradients in the tropical
Pacific can modulate radiation and feedbacks, i.e., the pattern effect55–65. When the
West Pacific is anomalously warmer than the East Pacific, the moist adiabat changes
for the rest of the tropics too (weak temperature gradient83). This in turn would lead
to a more negative lapse rate feedback and a more stable atmosphere in subsidence
regions, yielding more low clouds and a more negative cloud feedback. Conversely,
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when the East Pacific is anomalously warmer than the West Pacific, there is a more
positive lapse rate feedback and a more positive cloud feedback. This would lead to a
more positive total climate feedback and hence a larger EEI.

We hypothesize that this pattern effect would be observable over a 20-year
period with the unforced simulations (CM4 Control), the forced simulations (AM4
PSST), and the satellite observations (CERES). Year-to-year forcing changes were
removed in the latter dataset using the estimate of forcing from our experiments
(Supplementary Fig. 10a; the difference between AM4 PSST+ERF and AM4 PSST).
West Pacific and East Pacific boxes are drawn in Supplementary Fig. 13a.

We find that on an interannual basis, indeed, global ΔRSW decreases as the East
Pacific warms more than the West Pacific (Supplementary Fig. 11a, Supplementary
Table 6). This relation is stronger for the tropics (Supplementary Fig. 10a;
Supplementary Table 6). The results are insensitive to two different tropical Pacific
SST gradient metrics59,66. These results are confirmed by the fully coupled model
results (Supplementary Fig. 10a, gray circles). However, over the 2001–2020 period,
the trend in the E–W ΔSST gradient is flat, yet the trends in RSW are negative,
contrary to the hypothesis (Supplementary Fig. 10b). CERES lies outside the lower
end of this range, which indicates that the observations have a larger negative trend
in RSW than the model for the same SST pattern trend. Finally, the pattern effect
predicts a negative relationship between OLR and the E-W SST gradient. However,
this is not what we find (Supplementary Fig. 11e). We find an increase in tropical
all-sky and clear-sky ΔOLR in most datasets (statistically significant for CM4 and
AM4 but not for CERES–Supplementary Table 6).

Data availability
CERES EBAF Edition 4.1 data was retrieved from the NASA Langley Research Center
Atmospheric Science Data Center. MODIS data was obtained from The Level-1 and
Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive
Center (DAAC). The observed surface temperature was obtained from NASA GISTEMP:
GISTEMP Team, 2020: GISS Surface Temperature Analysis (GISTEMP), version 4.
NASA Goddard Institute for Space Studies. Dataset accessed 2021 at https://data.giss.
nasa.gov/gistemp/. The GFDL AM4 data generated in this study have been deposited in
the Zenodo database under accession code https://doi.org/10.5281/zenodo.478472684.
CMIP6 Control and CMIP6 Historical data were obtained from the CMIP6 archive.

Code availability
Code can be accessed at: https://doi.org/10.5281/zenodo.478496885.
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