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20th century cooling of the deep ocean contributed
to delayed acceleration of Earth’s energy imbalance
A. Bagnell 1✉ & T. DeVries 2,3

The historical evolution of Earth’s energy imbalance can be quantified by changes in the

global ocean heat content. However, historical reconstructions of ocean heat content often

neglect a large volume of the deep ocean, due to sparse observations of ocean temperatures

below 2000 m. Here, we provide a global reconstruction of historical changes in full-depth

ocean heat content based on interpolated subsurface temperature data using an auto-

regressive artificial neural network, providing estimates of total ocean warming for the period

1946-2019. We find that cooling of the deep ocean and a small heat gain in the upper ocean

led to no robust trend in global ocean heat content from 1960-1990, implying a roughly

balanced Earth energy budget within −0.16 to 0.06Wm−2 over most of the latter half of the

20th century. However, the past three decades have seen a rapid acceleration in ocean

warming, with the entire ocean warming from top to bottom at a rate of 0.63 ± 0.13Wm−2.

These results suggest a delayed onset of a positive Earth energy imbalance relative to

previous estimates, although large uncertainties remain.
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G lobal climate change is driven by imbalances in Earth’s
energy budget due to both anthropogenic and natural
influences1,2. Estimating historical changes in Earth’s

energy imbalance (EEI) is essential for accurately quantifying
climate sensitivity to greenhouse gas emissions, benchmarking
climate models used in making future climate projections, and for
understanding the contribution of natural events and climate
patterns to modulating the global climate response to anthro-
pogenic forcing2,3. The ocean is currently the largest energy
reservoir in the Earth’s climate system and is responsible for
absorbing and storing more than 90% of the excess heat in the
Earth system that results from anthropogenic climate change2–4.
Thus, measurements of the global ocean heat content (OHC) over
time provide one of the best ways of estimating historical trends
in the EEI2–4.

Historical changes in global OHC can best be reconstructed
from in situ temperature observations. Over the past 15 years, the
Argo program5 has deployed thousands of autonomous floats
which provide continuous observations of the temperature in the
upper half of the ocean, to a depth of 2000 m. This has allowed
for a convergence in estimates of OHC over the last fifteen
years2,5 and increased confidence in calculations of the ongoing
EEI in light of independent confirmation from modern satellite
observations2,6,7. However, several challenges exist for reducing
uncertainty in estimates of total ocean warming and extending it
over longer time periods. First, the deep ocean below 2000 m
remains poorly observed, even during the Argo era, which leads
to additional uncertainty on current estimates of total warming.
While absolute temperature changes in the deep ocean are small8,
the large volume of the ocean below 2000 m makes it a potentially
meaningful contributor to the global heat inventory. Repeat
hydrographic sampling indicates that the deep ocean may be
warming significantly in some regions9, particularly the Southern
Ocean8, whereas other regions may still be cooling as a response
to cold periods in the past millennium10, making it critical to
include the heat content of the deep ocean in global estimates of
ocean warming. The second issue is that, prior to 2005, data
collection was conducted primarily by scientific research vessels
and ships of opportunity, leaving areas outside of major trade
routes or research transects with few direct observations2,11. This
leaves large gaps in the observational record that must be filled in
order to estimate OHC.

Several methods have been devised to overcome these gaps in
ocean temperature observations and to produce estimates of his-
torical changes in OHC. One common approach applies objective
mapping to interpolate the sparse temperature records in space and
time11–13. However, while these objective mapping products can
reconstruct ocean temperatures back to ~1950, they do not extend
below 2000 m due to the sparse sampling at these depths. Dynamical
data-assimilation models offer an alternative approach to objective
mapping and provide full-depth estimates of OHC14,15, but data
sparsity means these models are poorly constrained at depth, leading
to large cross-model variance15. Another approach based on the
passive transport of surface temperature anomalies into the interior
ocean10,16 can also reconstruct full-depth temperature anomalies
and OHC changes, but relies on the potentially incorrect assumption
of steady-state circulation16 and is sensitive to the initial condition
used in the simulation10,16 and to poorly known surface ocean
temperatures dating back several millennia10. Finally, statistical
methods have been used to detect large-scale trends in the deep
ocean temperature from repeat hydrographic sampling9, but these
have coarse spatial resolution and do not cover the period prior to
the mid-1980s. An interpolation product based on in situ tem-
perature data that covers the deep ocean below 2000 m, allowing for
a full-depth OHC estimate, remains crucial to reliably estimating
historical changes in EEI7,17.

Here, we interpolate historical ocean temperature data using an
autoregressive artificial neural network (ARANN) to produce a
single consistent estimate of the top-to-bottom OHC change for
1946–2019 using in situ temperature data from the World Ocean
Database18. This approach (Supplementary Figs. 1–2) adapts an
established machine learning method to perform an iterative
autoregression that adjusts spatio-temporal correlation scales
over time from the in situ temperature data itself, and effectively
propagates information from well-sampled times and regions to
more sparsely sampled areas to produce global maps of tem-
perature anomalies at roughly annual resolution (Supplementary
Fig. 3). This approach is robust to sparse data, allowing our
estimates of OHC change to be extended below 2000 m to the
seafloor (Fig. 1). We have tested the method on datasets from two
ocean models used in the Climate Model Intercomparison Project
Phase 6 (CMIP6)19,20, demonstrating the ability to accurately
reconstruct OHC changes on both global and basin scales (Sup-
plementary Figs. 4–7) at all depths of the ocean, and to recreate
modeled temperature anomalies at spatial scales of ~1000 km or
larger (Supplementary Figs. 8–11), even in the presence of rea-
listic geophysical noise that is present in the observations but not
the models (Supplementary Figs. 4–12). We apply the ARANN in
an ensemble approach designed to take into account sources of
uncertainty arising from the sparse distribution of temperature
observations2,11, documented instrument biases21–24 (Supple-
mentary Fig. 13), and choice of reference climatology used to
define the temperature anomalies25,26 (Supplementary Fig. 14).

Four instrumental bias corrections and six decadal climatolo-
gies are combined with random selections of temperature data to
produce the 240 ensemble members used in this study. This
ensemble is used to assess the uncertainty of our OHC recon-
struction and provide bounds on our estimates of ocean warming.
All estimated warming rates come from fitting a linear trend to
the mean ARANN OHC estimate and uncertainties in these rates
are calculated by taking 2 standard deviations across all ensemble
members. Where ranges are given, these compare the mean
ARANN estimate to other products. For simplicity, OHC esti-
mates from other studies are not plotted with their respective
confidence intervals, as the methodology for calculating these
varies by study, but they generally possess uncertainty levels
similar to those provided by the ARANN.

Results
Global and basin-scale OHC changes. Estimates of the global
full-depth OHC from the ARANN method show that there was
no net ocean warming during the four decades from 1950 to
1990, but instead the OHC fluctuated by ~50 ZJ on roughly
decadal timescales (Fig. 1a). However, since 1990 there has been a
rapid acceleration in ocean warming, with the ocean gaining 303
± 56 ZJ of thermal energy in the past three decades (Fig. 1a). This
temporal pattern is roughly consistent throughout the water
column, with minor warming prior to 1990 in the upper 700 m,
no warming in the 700–2000m depth range, and cooling in the
deep and abyssal layers below 2000 m (Fig. 1b–d). Warming rates
accelerated substantially after 1990 throughout the entire water
column, with the deep ocean switching from cooling to warming
after 1990 (Fig. 1b–d).

Passive transport methods10,16 that propagate surface tem-
perature anomalies to the deep ocean using steady-state ocean
circulation patterns provide internally consistent estimates of full-
depth OHC that can be directly compared to ARANN, after
adjusting their baselines to coincide with the ARANN estimate
during the Argo era (2005 onwards) (Fig. 1a). These passive
transport estimates differ from the ARANN and from each other.
Both show an earlier onset of ocean warming than the ARANN,
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with full-depth ocean warming starting in the mid-1970s for the
optimized mixing model (OPT-0015)10 and going back to the
1950s in the Green’s function (GF)16 product (Fig. 1a). The OPT-
0015 method shows very little ocean warming prior to the mid-
1970s, in agreement with the ARANN reconstruction, while the
GF method suggests a nearly constant ocean warming trend
throughout the past ~70 years.

Estimates of OHC from objective mapping products can be
compared to the ARANN estimates in the upper 2000 m
(Fig. 1b–c). There is broad agreement about the total change in
OHC among the objective mapping products and with the

ARANN ensemble for much of 1980–2019, with the JMA13

estimate on the very edge of the ARANN uncertainty range for the
700–2000 m depth interval (Fig. 1c). Prior to 1980, the mapping
methods diverge somewhat in their predictions over the upper
2000m, and the disagreement is most pronounced for the earliest
time periods. After adjusting the OHC anomalies of the objective
mapping estimates to the mean ARANN 0–2000m OHC value
over 2005–2019, the ARANN OHC in 1955 is 71 ± 58 ZJ greater
than that estimated by the IAP11 product, 51 ± 58 ZJ greater than
the NOAA12 product, and 114 ± 58 ZJ greater than the JMA13

product (Fig. 1b–c). The large spread among OHC products prior
to 1980 is primarily due to increased data sparsity in this period,
but the choice of reference climatology also plays a role in
enhancing uncertainties in the ARANN during this time period.
For years prior to 1970, mean ARANN OHC over the 0–2000 m
depth interval can vary by as much as 67 ZJ when using different
reference climatologies (Supplementary Fig. 14), which is a source
of uncertainty that has generally been neglected in the other
mapping products. Despite these uncertainties, all mapping
methods show an acceleration in OHC uptake over time in the
0–2000m interval. For the mapping products, the underlying
subsurface temperature data creates strong constraints that reduce
the variance across methods over the last several decades of OHC
estimates (Fig. 1b–c), in contrast to the passive transport products
where differences in methodology have large impacts on the
inferred OHC trends (Fig. 1a).

The ARANN yields a global interpolation of deep subsurface
ocean temperature data and shows a cooling trend from 1950 to
1990, representing a reduction of OHC by 26 ± 16 ZJ (Fig. 1d),
mainly canceling out the small heat gain in the upper 700 m and
contributing to the negligible warming of the global ocean
estimated by the ARANN during this time period (Fig. 1a). The
passive transport methods both predict almost negligible changes
in deep OHC during this period, with the GF method showing
slight warming and OPT-0015 showing slight cooling (Fig. 1d).
The ARANN predicts that the deep ocean has warmed
significantly since 1990, gaining 48 ± 19 ZJ, at a rate that closely
matches the estimates from repeat hydrographic surveys9 (RHS).
Over the past 30 years the deep ocean has gained back all of the
heat lost since 1950, arriving at possibly its warmest level over the
entire 75-year record (Fig. 1d). This rapid warming of the deep
ocean is contrary to the slow rise in OHC implied by the passive
transport models that use steady ocean circulation10,16, suggest-
ing that transient features of the deep ocean circulation are
important for contributing to the warming over the recent three
decades8,27.

Clear regional differences in ocean warming rates emerge on
ocean basin scales (Fig. 2). In the upper 700 m, the Atlantic Ocean
has warmed the most of all the major ocean basins, showing
sustained warming since the 1950s and accounting for more than
one third of the total warming in the upper 700 m. Objective
mapping methods and the ARANN agree for the period after
1980 in the shallow Atlantic, however, the ARANN produces
7–10 ZJ less warming than the objective mappings prior to 1985
(Fig. 2a). The sustained warming of the Atlantic Ocean has
penetrated into the intermediate layers (700–2000 m), but
methods disagree on the amount of warming prior to 2005, with
the JMA and IAP estimates putting as much as 10 ZJ more
warming into the intermediate Atlantic than the ARANN and
NOAA methods for much of the record (Fig. 2b). The ARANN
reconstruction of deep Atlantic OHC (below 2000 m) shows a
slight cooling trend until ~2005 then subsequent warming. This
reversal from cooling to warming trends is also captured by the
repeat hydrography data (Fig. 2c). However, the passive transport
method OPT-0015 shows an accelerated warming of the deep
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Fig. 1 Estimates of global ocean heat content. Estimates of ocean heat
content (OHC) changes for a the global ocean from the surface to seafloor,
b the upper 700m of the ocean, c the depth range 700–2000m, and (d)
the depth range 2000–5500m. The mean estimates derived from this
study (ARANN, blue) are shown with shading covering two standard
deviations from the mean over the 240 ARANN ensemble members. The
zero anomaly is defined such that the mean OHC of the ARANN estimate
for the period 1946–2019 is zero. Also shown are the mean OHC anomaly
from the IAP11 (red), NOAA12 (yellow), and JMA13 (purple) objective
mapping products, which cover the 0–2000m depth interval as shown in
(b)–(c). These products have been adjusted to the mean ARANN OHC
anomaly for 2005–2019. Shown for a the full ocean depth and d the deep
ocean are OHC anomalies from passive ocean heat uptake models using
Green’s functions (GF)16 (light blue) and an optimized mixing model (OPT-
0015)10 (green). The passive ocean heat uptake products are adjusted to
the mean ARANN anomaly for 1955–1985. Repeat hydrographic sampling
(RHS) gives temperature trends since 1985 in the deep ocean9 (maroon; d).
The RHS method gives a linear trend from 1985 to 2000 and from 2000 to
2015, which has been adjusted to the mean ARANN anomaly for
1985–2015.
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Atlantic over the entire time period (Fig. 2c), which may result
from biases in its estimated ventilation rates. Passive transport of
recent surface warming into the internal Atlantic via a steady-
state ocean circulation overlooks natural variability in rates of
overturning and deep water formation28–30, possibly explaining
an overestimate of the warming trend in the OPT-0015 versus
those of subsurface observations such as ARANN and RHS.

Fingerprints of ocean circulation changes are also apparent in
the spatial distribution of warming rates (Fig. 3). Prior to 1990,
the upper 700 m of the subpolar and polar North Atlantic was
cooling, while the Gulf Stream extension region was warming
(Fig. 3a), consistent with trends that have previously been
identified as fingerprints of a slowdown in the Atlantic
Meridional Overturning Circulation (AMOC) and reduced deep
convection in high-latitude deep water formation regions32,33.
Since 1990 there has been coherent strong warming throughout
most of the Atlantic basin, except for a small patch of cooling in
the center of the North Atlantic subpolar gyre (Fig. 3d). Warming
of the North Atlantic from 1990 to 2005 has previously been
linked to a surge in the AMOC after 199031, although this has
been followed by a decline in the AMOC after 2005 and cooling
of the subpolar gyre33, potentially contributing to the cooling
trend identified over this longer period in the central subpolar
gyre (Fig. 3d). After 1990 there is also pronounced warming at
mid depths (700–2000 m) throughout most of the Atlantic,
concentrated more strongly in the subpolar north and south
Atlantic (Fig. 3e). This is consistent with the mean overturning
circulation transporting surface warming to intermediate waters,
since these regions are close to the formation regions for North

Atlantic Deep Water in the North Atlantic and Antarctic
Intermediate Waters in the South Atlantic34.

Like the Atlantic, the Southern Ocean (defined here as south of
50o S) has been warming consistently since 1960 in the upper 700
m, a trend seen across multiple reconstruction methods (Fig. 2d). In
the intermediate layers (700–2000m), large differences in sub-
decadal variability across these methods reveal the impact of sparse
temperature sampling in the region, but the consensus across
methods is that warming of Southern Ocean intermediate waters
started in the 1980s, with little warming before that (Fig. 2e). The
ARANN reconstruction shows a cooling trend in the deep Southern
Ocean (>2000m) until ~1985, followed by rapid warming thereafter
(Fig. 2f). The post-1985 warming trends in the deep Southern
Ocean in the ARANN generally agree with the trends derived from
repeat hydrography, whereas the OPT-0015 passive transport
method shows a very small warming trend over the entire
1946–2019 period (Fig. 2f). The spatial distribution of warming in
the deep Southern Ocean shows that the rapid warming over the
past three decades is concentrated along the Antarctic margin,
where Antarctic Bottom Waters form in the Weddell Sea, Ross Sea,
and other marginal seas along the Antarctic shelf35,36 (Fig. 3f).

The Southern Ocean is a key global heat sink over the past three
decades. Most regions of the Southern Ocean have been warming
consistently since 1990 (Fig. 3d–f), and the 0–700m, 700–2000m,
and 2000–5500m depth intervals have all experienced roughly the
same amount of OHC change during this period (Fig. 2d–f).
Currently, the entire Southern Ocean from surface to seafloor sits at
its warmest levels since at least the 1950s. This rapid warming of the
Southern Ocean has been accompanied by a general asymmetrical
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Fig. 2 Ocean heat content for the major ocean basins. Basin-scale ocean heat content (OHC) anomalies for the Atlantic Ocean at depth intervals,
a 0–700m, b 700–2000m, c 2000–5500 m; for the Southern Ocean at depth intervals, d 0–700m, e 700–2000m, f 2000–5500m; for the Pacific
Ocean at depth intervals, g 0–700m, h 700–2000m, i 2000–5500m; and for the Indian Ocean at depth intervals, j 0–700m, k 700–2000m, l
2000–5500m. Ocean basins are defined using the World Ocean Atlas mask63, with the Southern Ocean considered everything south of 50o S. OHC
anomalies and uncertainties are computed as in Fig. 1 and compared with previous reconstructions as in Fig. 1. The Green’s Function (GF) method does not
provide basin-scale estimates of OHC and is omitted in the comparison here.
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warming over the past decade that has favored heating of the
Southern Hemisphere. For the period 2005–2019, the ARANN
estimates that the Southern Hemisphere accounted for 68% of
global OHC change in the top 700m, 54% for 700–2000m, and
81% below 2000m. This asymmetrical warming is consistent with
previous analyses that linked the redistribution of heat to internal
climate variability37. This appears to be a recent change in the
pattern of ocean heat uptake, however, as Northern Hemisphere
waters have consistently warmed over the entire 75-year record of
the ARANN while Southern Hemisphere waters cooled on average
prior to 1990 (Fig. 3).

Warming of the Atlantic and Southern Oceans above 2000 m
prior to 1990 was counterbalanced by slower rates of warming or
by cooling of the Indian and Pacific Oceans over this time period
(Fig. 2g–h, j–k). The Indian and Pacific Oceans show little trend
in heat content in the upper 700 m from 1950 to 1990 for the
ARANN, while other mapping products show very slight
warming over this period. Instead, this period is mostly marked
by decadal-scale oscillations in OHC in the ARANN reconstruc-
tion, which also appears to some extent in the objective mapping
products (Fig. 2g, j). Identifying the mechanisms responsible for
these oscillations is beyond the scope of this study, but these
could be related to changes in upper-ocean overturning
circulation associated with the Interdecadal Pacific Oscillation
(IPO)38, which has been ascribed to changes in the strength of
Pacific trade winds that affect eastern equatorial upwelling39, as
well as modifications to the winds in the tropical North Pacific40.
These factors also appear to modulate heat transport into the
Indian Ocean via the Indonesian Throughflow40,41. Below 700m,
the OHC estimates of the various mapping products greatly
diverge prior to 1990. ARANN indicates that the mid-depth
Pacific and Indian Oceans were cooling up until 1990, whereas
the IAP and NOAA products show little trend over this period
and the JMA method produces unabated warming throughout
the record, leading to large disagreements across methods totaling
~45 ZJ of difference in the warming summed over these two
basins (Fig. 2h, k).

The ARANN reconstruction also shows that the deep and
abyssal layers of the Pacific and the Indian Ocean were cooling up
until ~2000 (Fig. 2i, l). This cooling trend agrees well with the

OPT-0015 multi-millennial passive ocean heat uptake reconstruc-
tion, which produces a 20th-century cooling trend in the deep
Pacific and Indian Oceans in response to cold surface
temperatures during the Little Ice Age that occurred from the
14th-19th centuries10. This cooling trend has been preserved into
the 20th century due to the deep ocean’s long overturning
timescales10.

Over the past two decades, the Pacific and Indian Oceans have
warmed substantially throughout the water column, contributing
~52% of the global OHC change since the year 2000. This
warming has been concentrated in the upper 700 m, in agreement
with objective mapping reconstructions (Fig. 2g, j). While this
recent warming is coherent across most of the Indian Ocean, the
warming is more concentrated in the central and western Pacific
Ocean, with a slight cooling trend in the eastern Pacific (Fig. 3d).
This Pacific pattern is consistent with findings of enhanced
meridional temperature gradients in the tropical Pacific Ocean42

which could help explain a shift toward strong basin-wide El
Nino events during recent decades43. The ARANN reconstruc-
tion also shows substantial warming since 2000 of the mid-depth
(700–2000 m) as well as the deep ocean (below 2000 m), in
general agreement with objective mapping approaches in the
mid-depth layers and with trends derived from RHS in the deep
ocean (Fig. 2 h–i, k–l). However, the recent warming of the deep
Pacific and Indian Oceans found by the ARANN is contrary to
the continued slow cooling implied by passive heat uptake in the
OPT-0015, suggesting that the deep ocean warming since 2000 is
related to changes in the transport of deep and bottom
waters27,44.

A shift in EEI. The time derivative of the full-depth OHC,
dOHC/dt, should very closely track the EEI, since all other heat
sinks in the climate system are currently an order of magnitude
smaller than the ocean2,3. Periods of positive dOHC/dt represent
ocean warming and a positive net energy imbalance at the top of
the atmosphere, while negative dOHC/dt represents ocean cool-
ing and a negative EEI (Fig. 4). The EEI itself reflects a combi-
nation of positive anthropogenic forcing due to greenhouse gas
emissions and negative forcing due to anthropogenic aerosols1, as
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Fig. 3 Linear warming rates. Spatial maps of linear warming rates for the period 1946–1990 at depths: a 0–700m, b 700–2000m, and c 2000–5500m,
and for the period 1990–2019 at depths: d 0–700m, e 700–2000m, and f 2000–5500m. Warming rates were estimated by averaging temperature
anomalies over each depth interval, then applying a linear least-squares fit to the temporal trend of temperature at each 1o grid cell for the specified time
periods. Areas without significant trends (95% confidence interval) are cross-hatched. Uncertainties were estimated by calculating the sum of the error of
the linear fit and the cross-ensemble uncertainty of the warming rates at each grid cell for the various ARANN ensemble members.
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well as natural forcing by volcanic eruptions1,3 and natural
variability due to internal dynamics of the climate system3,4. We
find that over the entire 1946–2019 period covered by our OHC
reconstruction, there are more than a dozen transitions between
positive and negative values of the dOHC/dt (Fig. 4). Some of the
most negative dOHC/dt values are coincident with major volcanic
eruptions over the past 50 years, including Agun, El Chichon, and
Pinatubo3. However, there are more oscillations in the dOHC/dt
than can be associated with volcanic aerosol forcing, and in the
case of El Chichon the timing of the eruption occurs at a local
minimum in the dOHC/dt instead of just prior, indicating that
volcanic aerosol forcing may not always dominate over natural
variability in the EEI. This supports prior studies that point to
internal modes of climate variability such as ENSO2,7 and the
IPO4,38, or natural variability in solar irradiance45 as factors
influencing sub-decadal changes in the EEI for this 75-year
record.

Prior to 1990 the dOHC/dt oscillates around zero, averaging
−0.04 ± 0.11Wm−2 for the period 1946–1990. Without taking
into account the deep ocean cooling during this period, the
average dOHC/dt would be 0.01 ± 0.09Wm−2. An upward shift
in the dOHC/dt is noticeable in the mid-1990s (Fig. 4), after
which the average warming rate in the ARANN OHC
reconstruction is nearly always positive, averaging 0.67 ± 0.13
Wm−2 for the period 2000–2019. The timing of this shift, the
magnitude of the implied EEI, and the temporal variability of the
EEI agree well with estimates of the top of atmosphere (TOA) net
radiative flux6 for the period 1985–2016. The only time periods
where the TOA net radiative flux lies outside 2 standard
deviations of the ARANN-estimated EEI are in the early 1990s
just after the Pinatubo eruption, when the TOA radiative flux is
more negative than the dOHC/dt, and during the early 2000s
when the dOHC/dt shows an upward jump that is opposed to a
drop in the TOA net radiative flux (Fig. 4).

The magnitude of the ARANN-estimated dOHC/dt from 2000
to 2019 agrees within 2 standard deviations with numerous other
estimates for this period, including those based on dOHC/dt from

objective mapping products11,46, ocean reanalysis products14, and
CMIP5 hindcast models47, as well as estimates of EEI from
satellite altimeter and gravity data2 and top-of-atmosphere
radiative fluxes6 (Fig. 5). Prior to the year 2000, warming rates
estimated from our full-depth OHC reconstruction mostly agree
within their respective uncertainties with previous estimates from
the IAP mapping product11, passive transport methods10,16,
CMIP5 hindcast models47, and an independent estimate of EEI
for the period 1990–2016 from measurements of atmospheric
composition48. For the period 1960–1990, the ARANN approach
estimates essentially no warming (−0.03 ± 0.12Wm−2), implying
a roughly balanced Earth energy budget over this time period.
Objective mapping, passive transport methods, and climate
models have generally estimated small warming rates over the
1960–1990 period, but mostly overlap with the ARANN estimates
within their respective uncertainties (Fig. 5). Almost all methods
of estimating EEI agree on an acceleration of the EEI in recent
decades, particularly since 1990 (Fig. 5). A notable exception is
the GF passive transport method, which maintains a steady
warming rate across the entire 1960–2019 period, implying an
important role for ocean circulation changes in controlling the
acceleration of the EEI over recent decades. Overall, the ARANN
results support a broad consensus across almost all products of
accelerated warming over time (Fig. 5), but they also suggest that
previous estimates of ocean warming may have been biased too
high prior to 1990, in part due to the neglect of deep ocean
cooling. Including the effects of deep ocean cooling, as
determined by the mean estimate of the ARANN, would lower
the rates of ocean warming prior to 1990 determined by previous
objective mapping approaches11–13 by 18–32%.

Discussion
The ARANN reconstruction of full-depth OHC provides an
internally consistent framework for monitoring EEI over time,
showing that the Earth energy budget was in quasi-equilibrium,
with substantial decadal variability, for the four decades from
1950 to 1990. The warming rate from the ARANN does not differ
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Fig. 5 Global warming rates derived from various methods. Linear ocean
warming rates derived from this study (vertical gray bars) with 95%
confidence intervals (bold error bars) computed by taking the minimum
and maximum warming rates of the middle 95% of 240 ARANN ensemble
members. These are compared to other published estimates and
uncertainties (symbols and error bars) derived from mapping methods
(filled circle11, open circle46), passive transport products (filled star16, open
star10), dynamical reanalyses14 (triangle), satellite altimetry2 (asterisk),
CMIP5 climate models47 (cross), top of atmosphere (TOA) net radiative
flux6 (square), and the chemical composition of the atmosphere48

(diamond). Each symbol is associated with one of the gray bars and covers
approximately the same time interval.
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Fig. 4 Rate of change in global ocean heat content. Time derivative of the
global full-depth ocean heat content (dOHC/dt) from 1946-2019 (blue;
mean) with uncertainty (shading; 2 standard deviations) across 240
ARANN ensemble members. The dOHC/dt is computed using a centered
difference in time of the global OHC and applying a 1-2-1 filter to smooth
the result. This warming rate is divided by the surface area of the Earth so
that it can be interpreted as the ocean component of the Earth Energy
Imbalance (EEI). This is compared to the top of atmosphere (TOA) net
radiative flux6 (red dashed) for years 1985–2016. The timing of three major
volcanic eruptions is represented by icons with the corresponding volcano’s
name. Vertical gray bars cover 12 months prior to and 18 months after each
eruption to account for the imperfect time resolution of the ARANN dOHC/
dt (~12 months) and the e-folding time of volcanic aerosols in the
stratosphere64.
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from that derived by objective mapping methods with statistical
significance, and previous studies already support a slower ocean
warming rate for the 1950–1990 period relative to the 21st cen-
tury (Fig. 5). However, due to the combination of a smaller
estimated change in 0–2000 m OHC for 1950–1990 and the
contribution of deep ocean cooling, the ARANN implies a
stronger and later shift toward accelerated EEI than previously
recognized, and raises the question as to what may have caused
this climate shift.

Anthropogenic radiative forcing has remained positive and
continued to grow in magnitude over the past century1, so the
lack of global ocean warming implied by the ARANN results over
the period from 1950 to 1990 may seem counterintuitive at first.
However, Earth’s climate system is not currently at equilibrium.
Due to the timescales of overturning in the ocean, propagating
the entire forced climate signal from the surface to the interior
may require decades to centuries to manifest as signals in the
deep OHC8,10, implying that the EEI is modulated by changes in
external forcing on multi-decadal time-scales. In the deep ocean,
cooling of the Pacific and Indian over much of the 20th century
could result from a past climate event such as the Little Ice Age10.
A cooling trend that derives itself from long-term modes of cli-
mate variability49 would not be reflected in any of the compo-
nents of the external radiative forcing budget for the 20th century.

Nonetheless, deep ocean cooling does not entirely account for
the near zero warming trend in OHC prior to 1990, especially
when considering that the 0–2000 m interval shows minimal
change in the ARANN OHC estimate as well, averaging just 0.03
± 0.09Wm−2 from 1960 to 1990. The difference between the
ARANN and the IAP reconstruction11 of OHC in the upper 2000
m, is similar in magnitude to the ARANN estimate of deep ocean
cooling (Supplementary Fig. 15), and in general the spread across
OHC estimates in the top 2000 m is larger than the deep ocean
cooling trend estimated by the ARANN (Fig. 1b–c). This spread
indicates large uncertainties related to methodological differences
in estimating OHC over the latter half of the 20th century.
However, if the ARANN estimate of minimal upper ocean
warming prior to 1990 is correct, it could indicate that anthro-
pogenic or volcanic aerosol effects are larger than currently
estimated for this time period50 or that the transient climate
response to anthropogenic forcing is affected by regional feed-
backs arising from the pattern of ocean heat uptake51,52. Changes
in the ocean overturning can also affect the EEI by modifying the
rate of ocean heat uptake53, which could also lead to dis-
crepancies between radiative forcing and upper ocean warming.

The recent accelerated warming since 1990 implied by the
ARANN is consistent with the dominant effects of anthropogenic
greenhouse gas forcing and negligible volcanic aerosol forcing1,54,
as well as estimates of increased radiative forcing55 during the
past three decades. Due to improved ocean temperature sampling
over the past several decades, there is high confidence that the top
2000 m of the ocean have been gaining heat at an accelerating
rate, as indicated by the convergence of OHC estimates across
methodologies during this time period (Fig. 1b–c). In addition,
the ARANN results suggest that the deep ocean below 2000 m has
added 48 ± 19 ZJ since 1990, or about 10–28% of the ocean
warming above 2000 m during this period, significantly con-
tributing to the accelerating EEI in recent decades. This con-
tribution is larger than that from non-ocean components of the
Earth energy budget, including the land surface, cryosphere, and
atmosphere, which together account for ~27 ± 8 ZJ of warming
since 199056.

In all, the results presented here show that deep ocean cooling
during the latter half of the 20th century has given way to deep
ocean warming over the past three decades, contributing to a
delayed response of the EEI to contemporary radiative forcing

effects. If this recent shift toward warming of the deep ocean
continues, it will have implications for Earth’s climate for decades
to centuries to come due to the long overturning timescales of the
deep ocean. Continued monitoring of the global OHC, and
improved resolution of deep ocean temperature changes, will be
key for developing accurate forecasts of Earth’s energy budget and
future climate change.

Methods
Observational datasets and data processing. We used a dataset of historical
ocean temperature observations from 1946 to 2019 consisting of individual tem-
perature casts from the World Ocean Database (WOD) 201818 (Supplementary
Fig. 1a, Step 1). We used temperature casts from multiple instruments, including
mechanical bathythermographs and expendable bathythermographs (MBT and
XBT), ocean station data (OSD), conductivity-temperature-depth (CTD) profiles,
autonomous profiling floats (PFL), and autonomous pinniped bathythermographs
(APB). We quality controlled these data using the strictest quality control proce-
dures of the World Ocean Database (WOD), which exclude any data with a flag
other than 0. In addition, we excluded casts that have <5 discrete temperature
samples, while also requiring that one of these samples occurs in the top 100 m.
These extra steps reduce the possibility of including data from casts that have had
much of their data removed by flags, casts that had insufficient samples to be
properly quality controlled to begin with, or casts where much of the data was
removed in the near-surface due to an excessive vertical temperature gradient
(0.7 oCm−1 for the WOD).

Next, individual casts were linearly interpolated to the 102 standard depths of
the World Ocean Atlas63 (WOA) grid. Before the data from the various instrument
types were combined, systematic errors in the bathythermographs were corrected
(Supplementary Fig. 1a, Step 2) using some of the best available calibration
methods (see Supplementary Fig. 13). Then, these data were binned to the WOA
grid at monthly resolution based on the year and calendar month of their collection
(Supplementary Fig. 1a, Step 3). We binned using the median of observations
within each grid cell, to reduce the influence of outliers.

After binning the temperature data to the WOA grid, we subtracted a monthly
temperature climatology to create a field of monthly temperature anomalies
(Supplementary Fig. 1a, Step 4). For this step, we used one of six WOA decadal
climatologies covering years [1955–64, 1965–74, 1985–94, 1995–2004, 2005–2017].
These climatologies are monthly in the top 1500 m and seasonal below that. The
choice of climatology produces a difference in the mean total OHC change from
1946 to 2019 of up to 49 ZJ. The impact of climatological choice is small for the
final three decades of the OHC record but has a more significant impact on the
global OHC estimate in the deep ocean and further back in time (see
Supplementary Fig. 14).

Finally, we smoothed the resulting monthly anomaly maps using a 12-month
moving average, and then binned the smoothed monthly anomaly maps to 6-
month time intervals that span either Jan–Jun and Jul–Dec (Supplementary
Fig. 1b), or Apr–Sep and Oct–Mar. The choice of either Winter/Summer-centered
or Spring/Fall-centered anomalies also enters into our ensemble, but has little
impact on the final results. The end result is 148 three-dimensional temperature
anomaly fields spanning 1946–2019 at 6-month time intervals. Each anomaly field
(except for the first and last) contains temperature data from within an 18-month
window, with more weight given to observations within each 6-month window.
Thus, our final OHC estimates resolve OHC variability at roughly annual
resolution.

Description of the interpolation process. The inputs to the ARANN include a set
of basis functions that are used to approximate the spatial autocorrelations of the
temperature anomalies. These basis functions consist of a set of sinusoids, which
are used to approximate the correlation length scales found in the spatial maps of
the temperature anomalies. To obtain these basis functions, we averaged the
gridded temperature anomalies over the top 700 m for the years 2005-present and
took the first 6 principal components of the resulting anomaly map, which explain
>90% of the variance, in both the meridional and zonal directions. We also found
that we obtained very similar principal components if we used the 700–2000 m
layer instead of the 0–700 m layer. Using these principal components, we then
estimated the periods of their autocorrelations, which then became the periods of
our sinusoids. In the meridional direction, the six periods of the sinusoids are [360
180 90 60 45 30] degrees and in the zonal direction they are [180 120 90 60 45 22.5]
degrees. Both the cosine and sine functions are used for each period, leading to a
total of 24 basis functions. Due to how these sinusoids are constructed, they each
represent a basis function that is merely a two-dimensional array of numbers
between −1 and 1 with a characteristic length scale ranging from roughly 1000 to
18,000 km.

With these basis functions, the ARANN can reconstruct temperature anomalies
on horizontal scales of roughly 500–1000 km. The ARANN is not designed to
capture small-scale features and the OHC changes reconstructed by this method
should be interpreted on scales of ~1000 km or larger. Indeed, when the ARANN is
applied to temperature anomaly fields from global ocean models, the residuals
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contain features on the order of several hundred km even where the spatial
sampling is relatively dense and evenly distributed (see Supplementary Figs. 8–11).
The presence of geophysical noise and sparse sampling further reduces the scales
that we are able to resolve.

While the ARANN uses sinusoidal basis functions to capture spatial variability
in the temperature anomalies, there are no explicit variables for time or depth.
Instead, the ARANN uses a sweep from higher data coverage to lower data
coverage in order to capture the depth and temporal dependencies (Supplementary
Fig. 2a). This is done by slicing the three-dimensional temperature anomaly fields
into two-dimensional “chunks” and applying a separate ANN to each consecutive
two-dimensional temperature anomaly field, using temperature anomalies from
previous depth- and time-slices as additional input features. Vertical mixing is
important in certain regions and contributes to deep water formation, so surface
warming of the ocean would be expected to display some imprint on the layers
below. Because the ARANN is iterative, it optimizes for each depth interval during
its sweep from the surface to seafloor. Relationships identified by the ARANN at
depth will therefore evolve from those found at the surface. In this way, the
ARANN mimics in a parameterized way the circulation and mixing processes that
connect the surface and deeper layers of the ocean, and encodes some “memory” to
capture the temporal evolution and persistence of temperature anomalies. The
ARANN has limited memory, or what is sometimes called finite impulse, in that it
does not retain the knowledge of all prior time-steps but only those that have
occurred most recently. This simplification mimics the fact that the correlation
between temperature anomalies at a given location in the ocean diminishes over
time as heat is circulated and mixed away. Since the autocorrelations in the
anomalies evolve over time, the ARANN refines and evolves the relationship
between temperature anomalies and the input fields at each step.

The iterative process is described in detail below. At each step of this process, a
new ARANN is developed, trained, and validated, following the procedure
described in the next section.

1. Starting with the most recent 6-month period in the time-series (i.e.,
Jul–Dec 2019), we begin by randomly choosing the size of our initial depth
window, which consists of between two and six depth layers. This
corresponds to a depth interval of 10–150 m above 300 m. Starting with
the depth window closest to the surface, we randomly select 50% of the data
within that depth window for training the ARANN, setting aside the
remaining 50% for validation (a similar 50/50 training/validation split is
maintained through all subsequent steps). We then interpolate the
temperature anomalies in this initial near-surface depth window using only
the 24 sinusoidal basis functions as inputs to the ARANN. This is iterate
(1,1) in Supplementary Fig. 2a.

2. Moving down to the next depth interval, we again choose a random depth
window consisting of between two to six depth layers. The data sampling
and interpolation within this depth window are repeated as in Step 1, using
the interpolated temperature anomalies from the prior depth window as an
additional input to another ARANN (again, a new ARANN is trained at
each iteration). This is iterate (2,1) in Supplementary Fig. 2a.

3. Step 2 is repeated iteratively, moving down an additional depth level at each
iterate, and using the interpolated temperature anomalies from all prior
depth windows as additional inputs to the ARANN interpolation at each
depth level. This means that at each new depth level, there are 24+ i inputs
to the ARANN, where i is an index corresponding to the number of vertical
depth intervals used in the interpolation. Below 300 m, the depth window is
expanded to between six and twelve depth layers (corresponding to a depth
interval of 150–1200 m) to ensure that adequate amounts of data are
available to the network. Randomizing the size of the depth window at each
iteration ensures the model is not fixed to specific depth intervals and will
eventually produce a smooth transition in the vertical gradient. Steps 1–3
complete the initial sweep over depth levels and fills in iterates (1,1) to (i,1)
in Supplementary Fig. 2a. The total number of depth intervals used from the
surface to the seafloor ranges from 11 to 27 intervals, depending on the
(random) choice of depth layers used at each interval.

4. Steps 1–3 are then repeated iteratively, marching backwards in time at 6-
month intervals through the time series. At each time step, interpolated
temperature anomaly fields from six prior time intervals (or the maximum
number available if less than six) are used as additional inputs to the
ARANN. Using temperature anomalies from prior time intervals as
additional inputs to the ARANN mimics the temporal autocorrelation of
temperature anomalies and allows the propagation of information from
well-sampled time periods to more sparsely sampled periods. We do not fix
the autocorrelation timescale (other than limiting the inputs to 6 previous
time steps, or 3 years), but rather let the network decide at each iteration
how much weight to put on previous iterates when interpolating anomalies
at each time step. At the conclusion of Step 4, we have 148 gap-filled three-
dimensional datasets of temperature anomalies at 6-month resolution from
1946 to 2019.

5. After running the model backwards from 2019 to 1946, steps 1–4 are
repeated, this time running time forwards from 1946 to 2019. In this
forward sweep, we use interpolated temperature anomalies from three prior
time intervals and three subsequent time intervals as additional inputs to the

ARANN at each time step. This forward sweep helps to further propagate
information through the network and is particularly helpful for smoothing
results from the transient stage at the beginning of the backward run when
the model had less information on temporal autocorrelations. This is most
important in the abyssal ocean where temporal autocorrelations are longer
and data is sparser.

6. Steps 1–5 are repeated 10 times for each possible climatology, generating an
ensemble of 60 ARANNs for interpolation, from which we can derive
uncertainties related to data sampling, interpolation, and climatology.

7. Steps 1–6 are repeated four times, each time applying a different calibration
method to the XBT and MBT data (see Supplementary Fig. 13).

An example of the resulting temperature anomaly field from this mapping
method (Supplementary Fig. 3) reveals how our method takes the original binned
temperature anomalies and interpolates the data to produce filled anomaly fields
for a single realization of the ARANN. In the upper 50 m for the year 1960, the
observational sampling neglects much of the southern hemisphere, but by
leveraging information from prior iterations, the ARANN method produces a
smooth product that fills gaps that would not be captured by traditional objective
mapping. In the year 2010, the upper 50 m has much more regular sampling, and
the ARANN method captures the large-scale patterns while smoothing over small-
scale features. For 900–1100 m in the year 1960, temperatures are very sparsely
sampled, but the ARANN method still produces large-scale regional structures that
would not be captured by traditional objective mapping. The ARANN also
smooths over most of the small-scale noise in the observations at these depths. This
noise is quite apparent when considering the anomalies fields for 900–1100 m in
the year 2010. The ARANN interpolation of this data captures the large, near
basin-scale spatial patterns, while ignoring most mesoscale to sub-mesoscale
patterns, which can be seen in the residuals (ARANN – Obs.) of the temperature
anomalies.

Architecture of the ARANN and method of solution. Each step of the individual
autoregressive artificial neural network (Supplementary Fig. 2b) consists of an
input layer that contains 24 naïve basis functions (B), as well as filled temperature
anomalies for six adjacent time steps (if available) (θt), and anomalies for all prior
depth intervals for the current time step (θz). Each input is organized as a vector
with a length n, equal to the number of spatial grid points in the gridded tem-
perature anomaly fields. In total, there are m input fields, where m is between 24
and 46 (24 basis functions, 6 filled temperature anomaly fields from adjacent time-
steps, and up to 16 filled temperature anomaly fields from prior depth intervals).
These inputs are organized as an array I with size (n ×m),

I ¼ ½B; θt ; θz �: ð1Þ
In the ARANN, the input “layer” connects to a single hidden “layer” with 10

nodes, producing a network with (m × 10) input “weights” organized as an array
(W1). We selected this number of nodes by experimenting with adding more free
parameters, the weights, until the performance of the ARANN on internal
validation sets comprised of data sampled during periods of high data sparsity (pre-
2005) no longer improved. The values for the hidden layer (H) produced by the
ARANN are,

H ¼ FðI �W1 þ b1Þ; ð2Þ
where F is the “transfer function” used to propagate information in a non-linear
fashion through the network, and b1 is a [1 × 10] array of “biases”, with all values in
a given column being identical. We use the hyperbolic tangent as the transfer
function, which is commonly employed for interpolation57–59 by fully connected
feedforward networks like the ARANN. The output “layer” connects to the hidden
layer using another [10 × 1] array of weights W2 and a single bias [1 × 1] b2 to
produce the predicted temperature anomalies for the interpolation (θintp),

θintp ¼ H �W2 þ b2: ð3Þ
In all, each network has (10 ⨯ m) + 21 free parameters, representing the (10 ×

m) weights W1 of the input layer, the 10 bias terms of the input layer, and the one
bias term, and the 10 weights W2 of the output layer. These free parameters are
iteratively adjusted to achieve a minimum of a cost function that measures the
mean sum of squares difference between the interpolated temperature anomalies
(θintp) and the observed temperature anomalies in our training dataset (θtrainobs ),

cost ¼
∑N

k¼1ðθkintp � θtrain;kobs Þ2

n
; ð4Þ

where N is the number of observations within the training dataset at each iteration.
As discussed in the prior section, the training dataset consists of a random 50%
selection of all available data at each iteration. For the back-propagation algorithm
in our network, which iteratively updates the values of the weights to minimize the
cost function, we chose the Levenberg-Marquardt algorithm60 due to its improved
performance at reducing the error between predictions and observations versus
other common algorithms such as gradient descent61.

For each network, we withhold the 50% of data not selected for the training set
as validation of the network. This validation dataset (θvalobs), is used to prevent
overfitting of the network, which occurs if the network is over-trained on a dataset
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so that it cannot extrapolate well when presented with new data. We use an early
stopping technique62 to avoid overfitting, whereby the interpolated temperature
anomalies are periodically checked against the validation dataset, and training is
terminated when the root-mean-squared error of the interpolated temperature
anomalies against the validation dataset begins to decrease.

Required smoothness constraints. After each time-step, we perform a further
check on the interpolated temperature anomalies to ensure that they satisfy certain
vertical and temporal smoothness conditions in their basin-averaged temperature
anomalies. These checks are performed individually for the Atlantic, Pacific,
Indian, and Southern Ocean basins (the Arctic is not considered for this check due
to data sparsity) using information about the natural rates of change derived from
observations during the Argo Era (defined as 2005 onwards). These checks are only
performed for time-steps prior to 2005. The boundaries for these ocean basins are
the same as defined in the main text and utilize the WOA 1-degree mask63.

First, we calculate the change in basin-averaged temperature anomaly at each
depth level from the current temporal iteration to the previous temporal iteration,
Δθtðbasin; zÞ, from the interpolated temperature anomalies during the well-
sampled Argo period (2005–2019). We also calculate the difference in basin-
averaged temperature anomaly at each iteration from one depth level to the
previous depth level, Δθzðbasin; zÞ, for the Argo period. This yields 28 values of
Δθtand Δθz for each basin and depth level. We then require that Δθtðbasin; zÞ and
Δθzðbasin; zÞ for the current iteration not exceed the 3rd standard deviation (σ) of
Δθtðbasin; zÞ and Δθzðbasin; zÞ during the Argo period. That is,

Δθtðbasin; zÞcurrent < 3σ½ðΔθtðbasin; zÞÞArgo�; ð5Þ

Δθzðbasin; zÞcurrent < 3σ½ðΔθzðbasin; zÞÞArgo�: ð6Þ
If a network does not pass both time and depth constraints for all ocean basins,

then that network is rejected and the network must start over at the same time-step
and depth interval. To allow for some additional flexibility, in the event that a
network is rejected more than five times in a row, the run that produced the lowest
average exceedance of these smoothing constraints is accepted and the procedure
continues as usual. This is an uncommon occurrence, appearing only a few times in
a single run from 2019 to 1946, but it most often occurs due to sharp changes in the
temperature anomalies of the deep Pacific during the early 1970s.

Statistical information. 240 ARANN OHC members are used for all depth
intervals in this study, representing 10 members for each combination of the four
bias corrections21–24 and six decadal climatologies63. All estimated warming rates
for the periods specified in the text are calculated from the mean linear trend of the
ARANN OHC members, and the uncertainty in these warming rates are calculated
as 2 standard deviations across the individual linear fits for the ensemble members.
All estimates in W m−2 are for the entire surface area of the Earth. Total warming
estimates in ZJ come from multiplying the warming rate derived from a linear fit by
the length of the time period under consideration.

Error bars in Figs. 1, 2, and 4 represent 2 standard deviations computed from
the ARANN ensemble members. In Fig. 3, the trends for each grid cell are
considered significantly different from zero only if the trends exceed twice the sum
of two components of uncertainty, 1. the ensemble-mean standard error of the
linear fit, which is a measure of the amount of uncertainty due to short term
variability in the warming rate at a given location, and 2. the standard error of the
cross-ensemble linear trends, which is a measure of the uncertainty due to the
ARANN mapping method.

For Fig. 5, warming rates for the specified periods are calculated from the mean
linear trend of the ensemble and the error bars for the ARANN estimates represent
the maximum and minimum warming rates after excluding the six members with
the highest rates and the 6 with the lowest, representing the 95% confidence
interval. Error bars in Fig. 5 for previously published warming rates come from the
uncertainties calculated by these other studies, which may differ somewhat from
each other due to methodological choices but roughly represent the 95%
confidence interval.

Data availability
The source data from the ARANN method underlying this study’s Figs. 1–5 and
Supplementary Figs. 3–15, as well as gridded temperature anomalies for the ensemble
mean have been made freely available under accession code https://doi.org/10.6084/m9.
figshare.12959489. Gridded temperature anomalies for individual ARANN ensemble
members will be provided upon reasonable request. Raw temperature casts from the
World Ocean Database are available at https://www.ncei.noaa.gov/access/world-ocean-
database-select/dbsearch.html. Temperature climatologies from the World Ocean Atlas
are available at https://www.nodc.noaa.gov/OC5/SELECT/woaselect/woaselect.html.
Data used in this study from the IAP ocean heat content and IGOT temperature profiles
are available at http://159.226.119.60/cheng/. Data from the JMA ocean heat content are
available at https://www.data.jma.go.jp/gmd/kaiyou/english/ohc/ohc_data_en.html. Data
from the NOAA ocean heat content are available at https://www.ncei.noaa.gov/access/
global-ocean-heat-content/. Ocean heat content data from the Green’s functions method
are available at https://laurezanna.github.io/post/ohc_pnas_dataset/. Data from the
optimized mixing model OPT-0015 are available at https://drive.google.com/file/d/

1dgpYPpGdt8fvr3aXvCFbUE9iyKnVVfAN/view. Data for the top of the atmosphere net
radiative flux is available at https://researchdata.reading.ac.uk/111/. Data from the repeat
hydrographic sampling is contained in Table 1 of https://doi.org/10.1002/2016GL070413.
Additional data contained in this study’s Fig. 5 can be obtained from https://doi.org/
10.3389/fmars.2019.00432, https://doi.org/10.1038/nclimate3043, https://doi.org/
10.1002/2014GL062669, and https://doi.org/10.1038/s41598-019-56490-z. Outputs from
the MIROC and CNRM CIMP6 models can be obtained at https://pcmdi.llnl.gov/
CMIP6/.

Code availability
Code needed to implement the ARANN method and plot the source data contained in
this study’s Figs. 1–5 and Supplementary Figs. 3–15 have been made freely available
under accession code https://doi.org/10.6084/m9.figshare.12959489. All code is provided
“as is” and modifications may be necessary depending on users’ available computational
resources.
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