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Further details on the methods 
The general approach of using lower frequency temperature variation to better understand the 

magnitude and dynamics of climate change impacts is well established in the climate impacts 

literature. Several papers contrast impacts estimated using high-frequency weather variation with 

those estimated using lower-frequency variation, either average temperature differences over long 

intervals (i.e. “long differences”) or multi-decadal moving averages, to identify the effects of 

adaptation on the levels of climate damages[1–4]. Most notably, Hsiang (2016) presents panel 

regressions of US temperature and corn yield data, successively filtering out higher-frequency 

temperature and yield variation and argues that the stability of regression estimates using longer 

temperature variation indicates agricultural adaptation to warming is either slow or ineffective [5]. 

While conceptually similar to our empirical approach, the question this literature addresses is distinct 

in that, because the dependent variable in each case is a level outcome (typically crop yields), these 

papers address how adaptation does or does not attenuate the level of climate damages as a function 

of the longevity of temperature variation. Since our dependent variable is a growth rate, the question 

addressed is whether the effects of short-term temperature shocks on the level of GDP persist, and 

therefore whether damages compound over time in response to sustained periods of warming. Most 

importantly, even if the estimated growth effect attenuates to zero at lower frequencies (i.e. the 

purple line in Figure 2), this is still consistent with an effect of long-term warming on the level of GDP, 

for instance as modeled in the damage function of most cost-benefit integrated assessment models 

[6]. 
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For the simulation exercise (Figure 2), we first generated 10,000 random 350-year temperature time 

series that preserve the internal dynamics and characteristic periodicity intrinsic to the climate system. 

This dynamic was retrieved by performing a fast Fourier transform (FFT) of 1500 years of global mean 

surface temperature data prior to anthropogenic influence, obtained from the Last Millennium 

Reanalysis project [7]. Simulated temperature time-series were generated using the spectral profile 

given by this FFT but with randomly chosen phases, generating 10,000 random counterfactual time 

series that might have arisen from the Earth’s natural variability.  

For each of the 10,000 temperature time series we generated two alternative economic growth time 

series that reflected the two climate impacts scenarios that we hope to distinguish: levels and growth. 

Following Dell et al [8], the levels model is given by 𝑔𝑡 = 𝑔 + 𝛽𝑇𝑡 − 𝛽𝑇𝑡−1 + 𝑒𝑡 and the growth model 

by 𝑔𝑡 = 𝑔 + 𝛾𝑇𝑡  +𝑒𝑡. The growth baseline g was set at 0.01 representing 1% per year baseline growth, 

the temperature coefficients 𝛽 and 𝛾 were both set at -0.05 representing 5% decrease in growth per 

degree of warming, and a random noise was drawn from a normal distribution with standard deviation 

of 0.005, representing growth rate variability unexplained by temperature.  

The persistence test consists of regressing growth on temperature after filtering the temperature time 

series to remove higher frequency oscillations. We use a low-pass Butterworth filter in R (pass.filt from 

dplR library) that removes all oscillations with periodicity between 2 and the desired upper boundary 

of the filter. We perform the regressions of simulated growth on simulated temperature for 4 sets of 

filters (upper boundary = 3, 5, 10 and 15 years), and an unfiltered case. 15 years is the longest 

periodicity we filter because the algorithm needs data that spans at least twice the maximum period, 

so after 30 years data for many countries started to be missing. The unfiltered case, in both the 

simulations and the main regressions also includes a one-year temperature lag. This is required for 

generating an unbiased estimate of the levels effect - if temperature affects levels then 𝑇𝑡−1 

determines 𝑔𝑡 (i.e. equation 2). Omitting 𝑇𝑡−1 will therefore bias estimates of the effect of 

contemporaneous temperature shocks (𝑇𝑡) if there is temporal autocorrelation in the timeseries. Lags 

are not included in regressions using filtered temperature data since these regressions are intended 

to integrate the effect of persistent temperature excursions.  Figure 2 shows the mean value of the 

estimates after filtering the temperature data and the 95% confidence interval.  

One concern is that applying a frequency filter reduces the amplitude of the temperature time series, 

effectively attenuating unusual temperatures related to some extreme events and therefore 

mechanically inflating the estimates of the temperature coefficient, an effect that could lead to 

spurious evidence of “non convergence” if not corrected.   Therefore we apply a correction factor to 

all estimates. Prior to filtering, the time series is detrended and demeaned. We then compute the 



median ratio of the amplitude between filtered and unfiltered temperature time series to gauge the 

magnitude of the (multiplicative) bias; and then divide the estimated coefficient by the ratio. 

Supplementary Figure 6 illustrates the effectiveness of this approach using the simulations also shown 

in Figure 2. 

We retrieved yearly country-level data on economic growth for the 217 countries in the World Bank 

database [9] for the period 1960 to 2020. Gridded temperature and precipitation data from the 

University of Delaware dataset (1900 to 2017; [10,11]) was aggregated to the country level using 2015 

population weighting from the Gridded Population of the World version 4 dataset [12]. Two 

alternative datasets were used to check for the robustness of the results (See Supplementary Figure 

3). The first is the Barro-Ursua economic dataset, covering 43 countries from the late 18th century to 

2009 [13]. The dataset has been constructed with the specific focus of studying periods of 

macroeconomic crisis during the industrial era. The second is the Maddison Project economic dataset 

that covers 169 countries during the study period[14]. The dataset is intended for analysis of the 

determinants of growth and stagnation in the world economy, reflecting both current international 

differences in GDP per capita as well as the current knowledge on the historical patterns of growth. It 

combines multiple approaches to historical time series reconstruction in order to minimize the 

discrepancies with established historical benchmarks of income or living standards [14]. Due to the 

sparsity of temperature and rainfall records pre-1900 and for greater confidence in GDP data, we use 

only post-1900 data for both datasets.  The Supplementary materials list the countries contained in 

the three datasets. 

Temperature, rainfall and economic growth data was demeaned and quadratic trends by country were 

removed to eliminate both time-invariant country variation and smooth, non-linear, country-specific 

trends in weather and growth rate. The residuals after demeaning and detrending were used to 

estimate the temperature effect (𝜃) on economic growth by performing the following regression for 

each country and filter: 𝑔𝑡 = 𝜃𝑓𝑇𝑡,𝑓 + 𝜋𝑓𝑃𝑡,𝑓 + 𝜖𝑡 where the index (𝑓) represents the level of filtering 

applied to the temperature and rainfall data before performing the regressions. We apply a low-pass 

Butterworth filter of order 4 and periods 𝑓 = 3, 5, 10, 15. 

As shown by our simulation (Figure 2), the persistence test consists of identifying whether (𝜃) is 

different from zero after filtering higher frequencies. That is, |𝜃15| > 0 is evidence for the existence 

of growth effects. 

The results could be replicated using our code published in the following public repository: 

https://github.com/BerBastien/TempEffectGDP 

https://github.com/BerBastien/TempEffectGDP


 

Comparison with lag models 

 

 

Supplementary Figure 1. Simulations comparing filtering and distributed lag models.  We created a 

random temperature time-series of 70 years (top) and 120 years (bottom) long and simulated 

growth and level effects on economic growth as in the original simulation. We then retrieved the 

temperature coefficients using the three alternative approaches: a low-pass filter (left), a regression 

with temperature lags (middle) and a regression with an imposed a degree-4 polynomial structure 

on temperature lags, which, by imposing smoothness on the lag structure, reduces the number of 

coefficients that need to be estimated (right). In the latter two panels the sum of lagged coefficients 

are plotted. The low-pass filter becomes more efficient than the distributed lags models for larger 

number of lags and longer filters. 

 

Discussion of non-linearities 

 

While in the literature there is evidence of non-linear effects of temperature on growth, this comes 

from panels of countries where the nonlinearity emerges over the very large cross-sectional variation 

in country temperatures (i.e. from just above 0°C to almost 30°C). Since we are interested in the 

within-country effect, where inter-annual temperature variability typically spans 2°C or less, the 

responses we estimate can be well-fit using a local linear approximation, even if the global response 

function across all countries is non-linear. Using a simulation, we show in Supplementary Figure 2 that 

an hypothetical “true” non-linear curvature as estimated by Burke et al [15] could be closely 

approximated by a linear relationship at a country-level. Importantly, the test for persistence effects 



using a linear relationship still successfully distinguishes between persistent and non-persistent effects 

even if the global, cross-country effect is non-linear. In addition, we test for the significance of a 

quadratic response at the country level and do not find evidence for this effect. Since adding quadratic 

terms greatly increases the number of coefficients that must be estimated and complicates the 

interpretation of the findings, we restrict the analysis to locally-linear, country-specific responses. 

 
Supplementary Figure 2. Comparison between a true non-linear effect and a linear 

regression model. Data for a hypothetical country with a mean temperature of 25 C and a 

global, cross-country  nonlinear effect using the curvature estimated by Burke et al  and an 

inter-annual, within-country time series variability of  roughly 2°C as shown in their 

Extended Figure 1 b-c. Note that because this is a relatively hot country far from the BHM-

estimated optimum in the response function, the non-linearity in the response will be larger 

than that of most other countries that are closer to the optimum. Top row: scatter plot of 



simulated GDP growth under temperature level effects for the unfiltered (left) and 15-years 

filtered (right) timeseries. The lines are fitted linear (red) and quadratic (blue) regression 

models with the shaded area showing the 95% confidence interval. Note that the slopes 

pass from being negative to be almost horizontal when the temperature time series is 

filtered. Middle row: scatter plot of simulated GDP growth under temperature growth 

effects for the unfiltered (left) and 15-years filtered (right) timeseries. The lines are fitted 

linear (red) and quadratic (blue) regression models with the shaded area showing the 95% 

confidence interval. Note that the slopes are virtually the same before and after filtering. 

Bottom: Persistency test using a “misspecified” linear model.  

 

 

Impacts of precipitation 

While the article focuses on the effects of temperature, we report here the results relative to 

the effects of precipitation. 67 countries exhibit evidence of growth effects at 90% confidence 

levels (bottom left panel, in pink). The larger share (60%) are negative growth effects, 

indicating that variation in precipitation from the climate norm have persistent adverse effects 

on the economy. In 51 countries, a switch in sign is detected as the 15-year filter is applied, 

going from positive to negative estimates. In light of Figure 2, this trend can be interpreted as 

evidence of positive level effects and negative growth, persistent effects. 

Supplementary Figure 3. Top panel. Country-level estimates of the effect of precipitation on economic growth. 

Each line connects the estimated coefficients from regressions at different levels of filtering of the 

precipitation (and temperature) data. Lines are color coded depending on the trend from the unfiltered to the 

most filtered estimate: orange when the absolute value of coefficients increases with filtering (“Not 

converging to zero”); dark orange when the difference between unfiltered and most filtered is significant at 

10% (“Intensifying”); blue when the absolute value of coefficients decreases with filtering (“Converging to 

zero”), and dark blue when the trend is statistically significant at 10% (“Converging to zero”); gray when the 

most filtered estimate is larger than the unfiltered but with opposite sign. The graph only shows countries with 

estimates below the 99th percentile for readability.  Bottom panel. The left-hand side of the chart displays the 

number of countries for which there is evidence of growth effects, in pink, and evidence of level effects, in 



purple. The right-hand side classifies 15-year filtered estimates by the type of trend using the same color code 

as Panel A. 

 

Supplementary Figures 

 

 

 

Supplementary Figure 4. Replication of Figure 3 in the main text g using alternate economic growth 

datasets. Top: Maddison Project economic dataset [14], Bottom: Barro-Ursua project economic 

dataset [13]. 

  



 

 

 

 

Supplementary Figure 5. Estimates (only significantly different from zero) across countries mean 

temperatures (top panel) and log of the GDP per capita in 2019 (middle panel) for unfiltered (left) and 

15-year filtered estimates (right). The bottom panel shows that for the 15-year filtered estimates there 

is a positive relationship between countries that are statistically significant and the standard deviation 

of the country’s yearly temperature, meaning that, on average, larger variance in temperature helps 



to identify the effect. The blue lines are smoothed linear regression models fitted to the data and the 

shaded areas show the 95% confidence interval.  

 

 

 

Supplementary Figure 6. Simulations as described for Figure 2 but adding iid noise of growing magnitude to 

the temperature time series. True size effect = -0.05% (shown by the black horizontal line in each panel). Note 



that coefficients in the level model still trend towards zero at longer filters, but impacts in the growth model 

intensify slightly due to reduced attenuation bias from filtering out noise in the temperature time series. 

Substantial measurement error in the temperature variable could attenuate the estimated coefficient, biasing 

it towards zero, and inducing an apparent intensification effect as longer filters gradually filter out noise in the 

temperature variable, producing larger coefficients closer to the true growth effect. However, measurement 

error on temperature  would need to be very large (i.e of comparable magnitude to inter-annual variation in 

temperature, bottom panel)  in order to explain the intensifying pattern observed in some countries. 

 

 

Supplementary Figure 7. Simulations as described for Figure 2 but comparing adjusted and unadjusted 

coefficients. True size effect = -0.05%. The filtering of temperature data reduces the amplitude of the climate 

signal and mechanically inflates the estimated coefficients (blue and orange coefficient). Coefficients are 

adjusted by a multiplicative factor equal to the median of the ratio of filtered to unfiltered data (green and red 

coefficients). Longer filters are applied to highlight the bias and bias correction 

 

  



 

Supplementary Figure 8. Marginal effect of temperature on GDP growth estimated with distributed lag non-

linear models with panel data. GDP growth data comes from the World Bank. 

Supplementary Tables 

 

  

 Dependent variable: 

 Estimated coefficient 

 Positive Negative Positive Negative Positive Negative 

 World Bank World Bank Barro-Ursua Barro-Ursua Maddison Maddison 

(-) (+) (-) (+) (-) (+) 

  

Constant 
(Unfiltered) 

-0.013*** 0.012*** -0.013*** 0.009*** -0.014*** 0.009*** 

 -0.003 -0.004 -0.003 -0.001 -0.003 -0.001 

       

Filter = 3 
years 

0.002 0.001 -0.002 0.00004 0.003*** -0.0003 

 -0.001 -0.002 -0.002 -0.002 -0.001 -0.001 

       

Filter = 5 0.001 0.002 -0.005** 0.002 0.003 -0.0005 



years 

 -0.003 -0.002 -0.003 -0.003 -0.003 -0.001 

       

Filter = 10 
years 

-0.002 0.007 -0.003 0.001 0.004 -0.001 

 -0.006 -0.004 -0.002 -0.003 -0.003 -0.002 

       

Filter = 15 
years 

-0.002 0.018*** -0.006* -0.008* 0.005 -0.002 

 -0.005 -0.007 -0.003 -0.004 -0.004 -0.002 

  

Observatio
ns 

427 342 95 85 259 260 

R2 0.002 0.028 0.02 0.058 0.005 0.001 

Adjusted R2 -0.007 0.017 -0.023 0.011 -0.011 -0.015 

Residual 
Std. Error 

0.186 0.239 0.117 0.108 0.178 0.158 

  

 

Supplementary Table 1. Results of regression model. In columns marked with (+) the dependent variable are the 

positive coefficients obtained estimating equation (4). In columns marked with (-)  the dependent variable are 

the negative coefficients so obtained. World Bank, Barro-Ursua, and Maddison are three different datasets of 

economic growth used to estimated equation (4). Observations are weighted by the inverse of the standard 

error from equation (4). Standard errors clustered at the continent level. *p<0.1, **p<0.05, ***p<0.01. 

 

 

 

 

List of countries.  
Years appearing in each dataset. 

 

Country WB Barro Maddison 

Afghanistan 15  61 

Angola 37  61 

Albania 37  65 



Andorra 47   

United Arab 

Emirates 

42  59 

Argentina 57 110 111 

Armenia 27  32 

Australia 57 110 111 

Austria 57 110 111 

Azerbaijan 27  32 

Burundi 57  61 

Belgium 57 110 111 

Benin 57  61 

Burkina Faso 57  61 

Bangladesh 57  61 

Bulgaria 37  90 

Bahamas 57   

Bosnia and 

Herzegovina 

23  59 

Belarus 27  32 

Belize 57   

Bolivia 57  111 

Brazil 57 110 111 



Brunei 43   

Bhutan 37   

Botswana 57  61 

Central 

African 

Republic 

57  61 

Canada 20 110 111 

Switzerland 37 110 111 

Chile 57 110 111 

China 57 110 74 

Cote d'Ivoire 57  62 

Cameroon 57  61 

Democratic 

Republic of 

Congo 

57  61 

Congo 57  61 

Colombia 57 104 111 

Comoros 37  61 

Cape Verde 37  61 

Costa Rica 57  91 

Cuba 47  109 

Cayman 

Islands 

11   



Cyprus 42  61 

Czech 

Republic 

27  41 

Germany 47 110 111 

Djibouti 4  61 

Denmark 57 110 111 

Dominican 

Republic 

57  61 

Algeria 57  62 

Ecuador 57  111 

Egypt 57 110 62 

Spain 57 110 111 

Estonia 22  31 

Ethiopia 36  61 

Finland 57 110 111 

Fiji 57   

France 57 110 111 

Gabon 57  61 

United 

Kingdom 

57 110 111 

Georgia 52  32 



Ghana 57  62 

Guinea 31  61 

Gambia 51  61 

Guinea-

Bissau 

47  61 

Equatorial 

Guinea 

37  61 

Greece 57 109 111 

Greenland 47   

Guatemala 57  91 

Guyana 57   

Hong Kong 56  62 

Honduras 57  91 

Croatia 22  59 

Haiti 57  66 

Hungary 26  88 

Indonesia 57 110 104 

India 57 110 111 

Ireland 47  91 

Iran 57  62 

Iraq 49  62 



Iceland 22 110 61 

Israel 22  60 

Italy 57 110 111 

Jamaica 51  71 

Jordan 41  62 

Japan 57 110 111 

Kazakhstan 27  32 

Kenya 57  61 

Kyrgyz 

Republic 

31  32 

Cambodia 24  61 

South Korea 57 98 98 

Kuwait 22  61 

Laos 33  61 

Lebanon 29  62 

Liberia 17  61 

Libya 18  61 

Sri Lanka 56 110 111 

Lesotho 57  61 

Lithuania 22  32 



Luxembourg 57  61 

Latvia 22  32 

Macao 35   

Morocco 51  62 

Monaco 47   

Moldova 22  32 

Madagascar 57  61 

Mexico 57 110 111 

Macedonia 27  59 

Mali 50  61 

Myanmar 57  71 

Montenegro 20  59 

Mongolia 36  61 

Mozambique 37  61 

Mauritania 56  61 

Mauritius 41  61 

Malawi 57  61 

Malaysia 57 105 107 

Namibia 37  61 



Niger 57  61 

Nigeria 57  61 

Nicaragua 57  91 

Netherlands 57 110 111 

Norway 57 110 111 

Nepal 57  62 

New Zealand 40 110 111 

Oman 52  61 

Pakistan 57  61 

Panama 57  105 

Peru 57 110 111 

Philippines 57 102 104 

Papua New 

Guinea 

57   

Poland 27  77 

Puerto Rico 57  61 

North Korea 0  54 

Portugal 57 110 111 

Paraguay 57  72 

Palestine 23  62 



Qatar 17  61 

Romania 27  106 

Russia 28 110 51 

Rwanda 57  61 

Saudi Arabia 49  62 

Sudan 57  61 

Senegal 57  61 

Solomon 

Islands 

37   

Sierra Leone 57  61 

El Salvador 52  91 

San Marino 20   

Somalia 4   

Yugoslavia 22  59 

South Sudan 7   

Sao Tome 

and Principe 

16  61 

Suriname 57   

Slovak 

Republic 

25  26 

Slovenia 22  59 



Sweden 57 110 111 

Swaziland 47  61 

Syria 0  62 

Turks and 

Caicos 

Islands 

6   

Chad 57  61 

Togo 57  61 

Thailand 57  64 

Tajikistan 32  32 

Turkmenista

n 

30  32 

Timor 17   

Trinidad and 

Tobago 

57  61 

Tunisia 52  62 

Turkey 57 110 90 

Taiwan  108 101 

Tanzania 29  61 

Uganda 35  61 

Ukraine 30  32 

Uruguay 57 110 111 



United States 57 110 111 

Uzbekistan 30  32 

Saint Vincent 

and the 

Grenadines 

57   

Venezuela 0 110 111 

United States 

Virgin Islands 

15   

Vietnam 33  62 

Vanuatu 38   

Samoa 35   

Yemen 27  61 

South Africa 57 98 99 

Zambia 57  61 

Zimbabwe 57  61 
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