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Economists view climate change as resulting from a massive market failure: today’s
greenhouse gas emissions generate global warming that will affect people and ecosystems for
many generations to come, yet those emissions often carry a market price of zero. Economists
therefore often view the primary goal of climate change policy as pricing greenhouse gas
emissions to account for the costs of the climate change they generate. In a valiant attempt
to quantify these costs, economists have developed integrated assessment models (IAMs)
that couple climatic and economic modules.1 These models determine the optimal emission
price by trading off the benefits of allowing more emissions today against the cost of future
climate change. However, accurately quantifying the costs of future climate change is an
impossible task: these costs depend, among much else, on the uncertain unfolding of climate
change, on the uncertain consequences of climate change for the economy and for wellbeing,
and on the uncertain evolution of technology and the economy. Conventional IAMs can
provide insight into which parameters are likely to be important for the optimal emission
price, but their deterministic structure can only take one so far in a world of uncertainty.

A newer generation of IAMs incorporates uncertainty into the optimal emission price.
These “recursive” IAMs solve a dynamic programming version of a standard IAM. Their
modeled policymaker is therefore cognizant of uncertainty and also of the possibility of
learning through future observations of the climate and the economy. In principle, the recur-
sive approach to IAMs can incorporate all of the uncertainties that bedevil the application
of standard IAMs to policy, though in practice many of these uncertainties are of such a
“deep” nature that they are difficult to formalize.

The present review outlines the recursive approach to climate change, demonstrates how
to use recursive modeling to generate deeper theoretical insight into the drivers of optimal
emission policy, and summarizes the main conclusions of the recent literature. We judge
this literature to be at an inflection point. The literature has made enormous strides from a
standing start. However, the marginal benefit of yet another model incorporating one more
standalone source of uncertainty is low. To date, most recursive models have been limited
by the use of numerical methods that are advanced relative to much work in economics
but nonetheless not well-adapted to the high-dimensional state spaces that characterize
IAMs.2 We propose that adopting computational methods even closer to the frontier of
computational economics will allow recursive IAMs to be more detailed and representative
of reality and thereby expand the types of questions that they can explore. To this end, we
describe the standard numerical approach to solving a recursive IAM and provide a guide
to some promising numerical methods that are not yet common in economics research. We
hope that the coming second wave of recursive IAMs will use these methods to ask new types
of questions.

1IAMs’ estimates of the social cost of greenhouse gas emissions have formed the backbone of U.S. policy
(Greenstone et al., 2011). See Nordhaus (2013) and Kelly and Kolstad (1999a) for overviews of climate-
economy integrated assessment.

2IAMs’ climate modules require several state variables on top of those required by their economic modules.
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In order to motivate the recursive approach to policy under uncertainty, the next sec-
tion formally describes the shortcomings of what some may see as the main alternative: the
Monte Carlo approach to policy under uncertainty. Section 2 then formalizes the recur-
sive approach. Section 3 decomposes the channels through which uncertainty about future
warming affects optimal policy, and Section 4 quantifies these channels in a recursive ex-
tension of the benchmark DICE IAM (which we will make publicly available). We hope
that these two sections provide future literature with a guide for using recursive IAMs to
generate theoretical insight. Section 5 summarizes key conclusions from the first wave of
research with recursive IAMs. Section 6 discusses numerical methods, both standard and
frontier. Section 7 concludes with suggested directions for future research. The appendix
extends the theoretical analysis to the case of Epstein-Zin-Weil preferences, provides the
full equations for our recursive IAM, and describes best practices for validating solutions to
recursive models.

1 The Shortcomings of the Monte Carlo Approach to

Policy Under Uncertainty

For many years, economists numerically analyzed the implications of uncertainty for climate
policy by undertaking Monte Carlo analyses of integrated assessment models (e.g., Pizer,
1999; Roughgarden and Schneider, 1999; Tol, 1999; Nordhaus, 2008). A newer, growing
literature analyzes uncertainty by constructing recursive, dynamic programming versions
of integrated assessment models. We begin by describing the Monte Carlo approach and
its shortcomings for analyzing most questions of interest about the policy implications of
uncertainty. We describe the dynamic programming approach in the next section.

Consider a stylized, simplified integrated assessment model. The policymaker controls
emissions et, trading off current utility from the consumption enabled by additional emis-
sions against the welfare loss from triggering additional warming in the future. The policy-
maker’s time t per-period utility is ut(et;Tt), with utility increasing and concave in emissions
(∂ut/∂et > 0, ∂2ut/∂e

2
t < 0) and decreasing in temperature (∂ut/∂Tt < 0). We allow util-

ity to depend on time to reflect the potential for exogenous growth in population, capital
stocks, or technology. Temperature evolves as Tt+1 = f(Tt, et, εt+1; s). Increasing time t
emissions increases time t+1 temperature (∂f/∂et ≥ 0), and increasing time t emissions can
also increase temperature after time t + 1 via the dependence of f on Tt. The parameter s
controls the climate’s responsiveness to emissions (commonly referred to as “climate sensi-
tivity”), with ∂2f/∂et∂s, ∂

2f/∂Tt∂s ≥ 0. The integrated assessment modeler does not know
the true value of s and is interested in the implications of uncertainty about s for welfare
and for emission policy. The integrated assessment modeler estimates the mean of s to be
µ0. Finally, εt+1 will be a random shock that will prevent the modeled policymaker from
immediately learning the true value of s, but we begin by treating εt+1 as deterministic so
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as to simplify the exposition.
If we knew that s took on a particular value si with probability 1, then our policymaker

could solve a deterministic problem. Specifically, the policymaker would solve:

W det(T0; si) = max
{et}τ0

τ∑
t=0

βtut(et;Tt), subject to Tt+1 = f(Tt, et, εt+1; si),

where β ∈ (0, 1) is the per-period discount factor, model time starts at time 0, and the
policymaker’s horizon extends out to τ > 0, with τ potentially infinite. Solving this problem
yields the policymaker’s maximized welfare W det as a function of initial temperature and si,
and it also yields optimal policy edett (si) in every period.

Now consider a Monte Carlo analysis of uncertain s. A Monte Carlo analysis of policy un-
der uncertainty solves the deterministic problem for several different values si and compares
the weighted average welfare and policy over these simulations to the welfare and policy
resulting from fixing si = µ0. Formally, Monte Carlo analyses commonly define maximized
welfare under uncertainty as3

WMC(T0) :=E0

[
W det(T0; si)

]
=

∫ ∞
−∞

W det(T0; si) p(si) dsi,

where E0 refers to expectations at time 0 and p(si) is the modeler’s probability that s = si.
And Monte Carlo analyses commonly define policy under uncertainty as

eMC
t :=

∫ ∞
−∞

edett (si) p(si) dsi.

Finally, Monte Carlo analyses commonly define the welfare cost of uncertainty asW det(T0;µ0)−
WMC(T0) and the effect of uncertainty on policy as eMC

t − edett (µ0).
Consider the information structure of the Monte Carlo analysis. Who is it that is uncer-

tain about s? Whose welfare is given by WMC(T0)? With respect to whose expectations is
eMC
t an average policy?

In the Monte Carlo analysis, the modeled policymaker is never uncertain about s. In
every simulation, the policymaker knows that s = si. In particular, the policymaker is not
uncertain about s when choosing emissions: emissions are chosen for a deterministic world.
Welfare WMC(T0) reflects the modeler’s uncertainty about which model to run (i.e., which
value of si to code), but it does not reflect uncertainty within a model about which value of
si is the correct one. A Monte Carlo analysis therefore assumes that we do not know the true
climate sensitivity today but will know it very soon, before we get around to formulating
emission control policies.

3In practice, the integral is discretized or modelers use a discrete distribution for s. Many modelers just
average over N values for si, in which case p(si) = 1/N .
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Not only are WMC and eMC conceptually odd objects, but the differences W det(T0;µ0)−
WMC(T0) and eMC

t − edett (µ0) may not even properly sign the effect of uncertainty on policy,
as demonstrated in Crost and Traeger (2013). Further, Crost and Traeger (2013) show that
a Monte Carlo analysis implies that uncertainty about a damage coefficient simultaneously
reduces the “optimal” abatement rate and increases the “optimal” abatement cost, two
results with seemingly contradictory implications for policy.

In sum, a Monte Carlo analysis can be useful for analyzing a model’s sensitivity to
assumptions, but a Monte Carlo analysis cannot answer many important questions about
the implications of uncertainty for welfare and policy.

2 The Recursive Dynamic Programming Approach to

Uncertainty

How can modelers handle uncertainty? We here describe the recursive dynamic programming
approach to climate change.4,5 The next section shows how to use the results of dynamic
programming to study the implications of uncertainty.

Consider the same setting as in Section 1. Maximized welfare with uncertain s is

W unc(T0) := max
{et(Tt)}τ0

E0

[ τ∑
t=0

βtut(et;Tt)

]
, subject to Tt+1 = f(Tt, et, εt+1; s).

Let eunct (Tt) denote the optimized emissions level at time t and temperature Tt. Note the dif-
ference between this expression and the expression for WMC(T0) from the previous section.
Here, we formulate policy by maximizing over the expectation of utility in every period.
There, we developed policy without using expectations at all, instead taking expectations
over s only along policy trajectories that had already been optimized. Here, our policy
eunct (Tt) depends on both time and temperature. There, our policy eMC

t depended only on
time because we averaged over policies which could each perfectly predict future tempera-

4A stochastic control approach can also properly address uncertainty, but it typically requires simplified
types of uncertainty (such as two-point distributions) and/or shortened time horizons (such as two-period
models). We here describe the benchmark approach to integrating uncertainty into a full climate-economy
integrated assessment model. Recently, a literature following Golosov et al. (2014) has developed analytic
IAMs that do not require advanced numerical methods. However, assumptions such as logarithmic utility
combine to make the model effectively linear, which can make uncertainty uninteresting in these settings.

5Lemoine (2015) studies the implications of uncertainty without using an optimization-based approach,
but he studies the implications for the social cost of carbon, not the optimal emission tax or the optimal
quantity of emissions. The social cost of carbon is defined for a given emission trajectory, and it matches
the optimal emission tax along the optimal emission trajectory.
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ture.6

The standard way of solving the problem is to write down its recursive formulation, in the
form of a Bellman equation.7 Use Vt(Tt) to denote the value of the optimal policy program
at time t when temperature is Tt. Thus, V0(T0) = W unc(T0). If the policymaker knows his
best possible value at time t + 1 for any given Tt+1, then he can select his optimal policy
at time t without needing to consider policies beyond t. This insight yields the following
relationship:8

Vt(Tt) = max
et

{
ut(et;Tt) + βEt

[
Vt+1(Tt+1)

]}
, (1)

where Tt+1 depends on Tt and et as before and where Et denotes expectations at the time
t information set. Note three features of this setup, as opposed to the Monte Carlo setup.
First, we here develop the optimal time t policy for any potential realization of Tt. Sec-
ond, the optimal policy here accounts for the fact that future realizations Tt+1, Tt+2, ... are
uncertain. Third, we use time t information when taking expectations over Vt+1, known as
the continuation value. The time t policy can thus depend on information about s obtained
from observing the climate prior to time t and can depend on how time t emissions might
generate information about s for use in later periods.

These are clear advantages over a Monte Carlo analysis. We are now analyzing the con-
ceptually correct problem for most interesting questions about uncertainty. However, there
is a catch: the current problem can be much more difficult to solve. Solving the Monte Carlo
problem merely requires solving a bunch of deterministic problems. It is not in principle
any more difficult than solving the original deterministic problem. However, solving equa-

6Consider an example with τ = 1. The optimal time 0 policy solves the first-order condition:

eunc0 = ũ−1
0

(
β

∫
s

∂u1(eunc1 (T1);T1)

∂T1

∂T1

∂e1
p(s) ds

)
,

where ũ0 := u′0(·). In contrast, the Monte Carlo approach yields

eMC
0 =

∫
s

ũ−1
0

(
β
∂u1(edet1 (si);T1)

∂T1

∂T1

∂e1

)
p(s) ds.

These two policies are equivalent if (a) eunc1 (T1) = edet1 (si) for each si and (b) ũ−1
0 (·) is linear. Condition (b)

holds if and only if u′′′0 (·) = 0, so that the recursive model’s agent would not undertake precautionary savings
(which are never undertaken in a Monte Carlo analysis because the modeled agent is unaware of uncertainty).
Condition (b) does not hold for most standard utility functions, including those used in integrated assessment
models.

7Numerous textbooks derive the Bellman equation and show that its policy and value solutions match
eunc and Wunc. A standard reference is Stokey and Lucas (1989).

8If we used an infinite horizon setting (τ = ∞) and did not allow per-period utility to vary with time,
then we would have the special (and truly “recursive”) case where Vt(Tt) = Vt+1(Tt), so that we can drop
the time index on the value function and write V (Tt). We could also obtain that representation by tracking
time in the state space.
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tion (1) poses a very different challenge. If we knew Vt+1(·), the maximization is potentially
straightforward (and almost surely simpler than maximizing over the τ -dimensional control
vector in the deterministic problem): we could optimize policy at each time t separately
from optimizing policy at any other time. However, we do not initially know Vt+1(·), as
it depends on maximizations at time t + 1 and beyond. The brunt of the computational
challenge rests in approximating Vt+1(·) over the relevant state space, which is just Tt in our
stylized example but is of much higher dimension in any standard climate-economy model.
Judd (1998) and Miranda and Fackler (2002) provide textbook descriptions of the relevant
computational methods, and recent reviews include Cai and Judd (2014), Maliar and Maliar
(2014), and Fernández-Villaverde et al. (2016). We describe computational techniques in
Section 6.

3 The Effect of Uncertainty on Policy

Most studies with recursive climate-economy models solve for each Vt(·) and then use the
solution to simulate trajectories for policy variables and state variables. However, the value
function itself contains valuable information about the underlying drivers of policy. Teasing
apart and quantifying these underlying drivers makes the results of numerical studies of
climate change both deeper and more generalizable. We here theoretically demonstrate these
channels through which uncertainty affects policy. Only a few studies have previously used
this type of information in their analysis, but we hope that this exposition will encourage
future work to use the value function to learn about the underlying drivers of policy.9 In
the next section, we will quantify these drivers in an extension of the benchmark DICE
integrated assessment model.

Again consider the setting described in Section 1, with εt+1 now a stochastic shock that is
independently and identically distributed over time. The value of εt+1 will never be observed,
but it will affect the observed temperature Tt+1. This shock in the temperature transition
prevents the policymaker from learning the true value of s from a single observation of
temperature. This stochastic shock represents the climate’s natural variability.10

Assume that the policymaker learns about s as a Bayesian. At time t she observes the new
realization of temperature and updates her prior distribution for s to form a posterior that
she uses in equation (1). Let s and εt each be normally distributed and enter the temperature
transition in a linear and separable fashion. In this case (which roughly matches nearly all
of the literature to date), we have what is called a conjugate prior and thus know that the

9Lemoine and Traeger (2014) use the value function to tease apart the different channels through which
potential tipping points affect policy. Lemoine and Traeger (2016a) quantify the channels through which
aversion to ambiguity about a tipping point’s threshold affects policy. Heutel et al. (2016) tease apart the
channels through which tipping points and geoengineering controls interact.

10This shock does not represent imperfect monitoring of the true state of the climate because the shock’s
realized value affects the true value of the state and thus the policymaker’s utility.
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posterior distribution of s is also normal. We can write the parameters of that posterior as
functions of the time t prior, of Tt, and of et−1.

Specifically, let the mean of the time t posterior for s be µt and the standard deviation
be Σt. These parameters evolve according to the following closed-form equations:11

µt+1 = g(µt, Tt+1, et, εt+1) and Σt+1 = h(Σt, et).

We consider the standard case in which Σt declines deterministically.12 The belief parameters
µt and Σt do not directly affect the time t payoff, but they do affect the time t expectation
operator. They are informational states that need to be tracked just like the more directly
payoff-relevant state Tt. The Bellman equation (1) becomes:

Vt(Tt, µt,Σt) = max
et

{
ut(et;Tt) + βEt

[
Vt+1(Tt+1, µt+1,Σt+1)

]}
, (2)

subject to the transition equations for Tt+1, µt+1, and Σt+1. The policymaker forms ex-
pectations of Vt+1 by integrating over her subjective time t beliefs about s and over the
objective distribution for the noise term εt+1. These expectations are conditioned on the
current informational states µt and Σt as well as on Tt and on the policymaker’s choice of et.

The policymaker’s optimal choice of time t emissions is governed by the following first-
order condition:

∂ut(et;Tt)

∂et
= −βEt

[
∂Vt+1

∂Tt+1

∂Tt+1

∂et
+
∂Vt+1

∂µt+1

∂µt+1

∂et
+
∂Vt+1

∂Σt+1

∂Σt+1

∂et

]
.

Greater marginal utility from emissions (left-hand side) corresponds to less emissions and
thus to a greater optimal tax on emissions. The right-hand side of this equation gives the
welfare cost of additional emissions.13 Pass the expectation operator through to decompose
the right-hand side into its economic components:

∂ut(et;Tt)

∂et
=β

{
Et

[
−∂Vt+1

∂Tt+1

]
︸ ︷︷ ︸

A

Et

[
∂Tt+1

∂et

]
+ Covt

[
−∂Vt+1

∂Tt+1

,
∂Tt+1

∂et

]
︸ ︷︷ ︸

insurance

+ Et

[
−∂Vt+1

∂µt+1

∂µt+1

∂et

]
+ Et

[
−∂Vt+1

∂Σt+1

∂Σt+1

∂et

]
︸ ︷︷ ︸

active learning

}
. (3)

11For a specific example, see Kelly and Tan (2015). See also Cyert and DeGroot (1974) for more on
conjugate priors.

12See Lemoine et al. (2016) for a setting in which the evolution of Σt is stochastic and potentially non-
monotonic.

13If we explicitly wrote consumption separately from emissions, we could divide by the time t marginal
utility of consumption to obtain the optimal time t tax on emissions.
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We see four components that determine optimal time t emissions. We will soon see that the
first term on the first line (labeled A) is itself composed of several components, including a
precautionary abatement component and a passive learning component. The second com-
ponent is insurance against the marginal effect of emissions on temperature covarying with
the marginal cost of temperature. The last line determines how active learning (i.e., the
ability to generate information about s through the choice of emissions) affects the optimal
emission policy. We proceed to analyze each of these components in turn.

3.1 Certainty-equivalence, precautionary abatement, and passive
learning

Begin with the component labeled A in equation (3). This component is the expected
welfare cost of additional time t + 1 temperature. It multiplies the expected increase in
time t + 1 temperature from additional time t emissions. A second-order Taylor expansion
of Et[−∂Vt+1/∂Tt+1] around z := (Et[Tt+1], µt,Σt+1) yields (noting that Et[µt+1] = µt for a
Bayesian):

Et

[
−∂Vt+1

∂Tt+1

]
≈ −∂Vt+1

∂Tt+1

∣∣∣∣
(Et[Tt+1],µt,0)︸ ︷︷ ︸

certainty-equivalent

+

{
−∂Vt+1

∂Tt+1

∣∣∣∣
z

− −∂Vt+1

∂Tt+1

∣∣∣∣
(Et[Tt+1],µt,0)

}
︸ ︷︷ ︸

adjustment for future uncertainty

+

{
1

2

−∂3Vt+1

∂T 3
t+1

∣∣∣∣
z

V art(Tt+1) +
−∂3Vt+1

∂µt+1∂T 2
t+1

∣∣∣∣
z

Covt(Tt+1, µt+1)

}
︸ ︷︷ ︸

precautionary abatement

+
1

2

−∂3Vt+1

∂µ2
t+1∂Tt+1

∣∣∣∣
z

V art(µt+1)︸ ︷︷ ︸
signal smoothing

. (4)

The first term on the right-hand side is the certainty-equivalent tax on emissions: the
welfare loss from a marginal increase in temperature is evaluated with s known to be fixed
at its time t mean.14 This tax would be the tax in a deterministic model that happened to
reach Tt at time t with si = µt. The term in braces on the first line adjusts the certainty-
equivalent tax to use the correct continuation value. This adjustment changes the time t tax
to reflect how uncertainty changes the marginal effect of temperature on future welfare. In
other words, this adjustment accounts for how all of the components to be described below
also affect policies and welfare after time t. This adjustment would be zero in the unrealistic
case where the time t policymaker knew that s would be fixed at µt once time t+ 1 arrived,

14By fixing s at its time t mean rather than its time 0 mean, we are calculating the certainty-equivalent
emission tax as the tax that would be optimal conditional on reaching the time t states and then ignoring
uncertainty.
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even though she is potentially unsure about the value of s that will govern the transition
from time t to time t+ 1.

The second line on the right-hand side of equation (4) describes a precautionary abate-
ment motive. In standard savings models, the third derivative of utility determines whether
increasing uncertainty about future consumption leads an agent to save more, in which case
we call the agent “prudent” (Leland, 1968; Drèze and Modigliani, 1972; Kimball, 1990). In
our setting, reducing emissions (i.e., increasing “abatement”) is a form of saving: it requires
forgoing current utility in order to obtain additional future utility. Just as agents in stan-
dard settings undertake precautionary savings when the marginal utility of consumption is
convex, here agents undertake precautionary abatement when the marginal welfare cost of
temperature is convex (i.e., when −∂3Vt+1/∂T

3
t+1 > 0).15,16 This precautionary abatement

channel becomes stronger as the variance of temperature increases.
The covariance term in the second line of equation (4) accounts for how anticipated learn-

ing affects precautionary abatement. The sign of −∂3Vt+1/∂µt+1∂T
2
t+1 probably matches the

sign of −∂3Vt+1/∂T
3
t+1 because the implications of raising µt+1 are similar to the implica-

tions of raising Tt+1.17 As shown in the transition equations for the full DICE model in the
appendix, Covt(Tt+1, µt+1) > 0 because high temperatures are a signal of high climate sensi-
tivity: we tend to learn that future temperatures will drift up especially fast when we have
already seen temperature start to rise. Anticipating learning about the climate’s sensitivity
to emissions then makes future temperature appear especially variable, because the policy-
maker does not know what she will learn but expects to learn something that will amplify
whatever the observed near-term change in temperature turns out to be. The precautionary
abatement motive is therefore strengthened by this positive covariance between the posterior
mean of s and temperature.

The third line of equation (4) determines how passive learning (the exogenous arrival
of information about s) affects the optimal emission tax. In particular, it describes how
temperature affects the policymaker’s ability to smooth welfare in response to whatever
signal she receives about s. The curvature of Vt+1 in µt+1 captures the policymaker’s ability
to smooth the consequences of a higher estimate of climate sensitivity. Note that high s is

15Repeatedly applying the envelope theorem to the Bellman equation shows that −∂3Vt+1/∂T
3
t+1 is closely

related to the third derivative of utility. Indeed, Sibley (1975) and Carroll and Kimball (1996) show that
the value function can inherit the third derivative of utility.

16Another way to think about the sign of −∂3Vt+1/∂T
3
t+1 is to consider whether the policymaker would

prefer to attach a mean-zero temperature risk to a state with more severe climate change or to a state with
less severe climate change (cf. Eeckhoudt et al., 1995; Crainich et al., 2013). In the latter case, we have
−∂3Vt+1/∂T

3
t+1 > 0.

17We could say that −∂3Vt+1/∂µt+1∂T
2
t+1 ≥ 0 when the policymaker is “cross-prudent” in temperature

with respect to expectations of climate sensitivity: the agent prefers to attach a mean-zero temperature risk
to a state with lower expectations of climate sensitivity than to a state with higher expectations of climate
sensitivity. However, note that we are here considering the derivatives of the value function rather than of
per-period utility. For more on cross-prudence, see Gollier (2010).
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bad: −∂Vt+1/∂µt+1 > 0. A positive value of −∂2Vt+1/∂µ
2
t+1 indicates that the marginal cost

of s increases in the level of s, as when damages are convex in the level of warming. The
anticipated arrival of information about s makes µt+1 variable from the perspective of time
t: the policymaker expects to revise her beliefs when she sees the new information, but she
does not know what that information will be. When −∂2Vt+1/∂µ

2
t+1 > (<) 0, the variance

V art(µt+1) of future beliefs reduces (increases) the policymaker’s expected future welfare.
When −∂3Vt+1/∂µ

2
t+1∂Tt+1 > 0, higher temperatures hinder the policymaker’s ability to

smooth welfare in response to different signals about s.18 In this plausible case, raising Tt+1

(through higher et) increases the cost of the variance in µt+1. The policymaker then has an
additional incentive to reduce emissions.19

3.2 Insurance

We now consider the other channels in equation (3). Begin with the insurance channel,

which reduces optimal emissions if and only if Covt

[
−∂Vt+1

∂Tt+1
, ∂Tt+1

∂et

]
is positive. This channel

depends on whether the marginal effect of emissions on temperature tends to be high when
the marginal welfare cost of temperature is high or when the marginal welfare cost of tem-
perature is low. In the former case, additional emissions have their strongest effect on the
climate when climate change matters the most for welfare. The covariance is then positive,
working to reduce optimal emissions and increase the optimal emission tax. In the latter
case, additional emissions have their strongest effect on the climate when climate change
matters the least for welfare. The covariance is then negative, working to increase optimal
emissions and reduce the optimal emission tax.20

What sign should we expect this covariance to have? Continue to focus on uncertainty
about the climate’s response to emissions.21 If we live in a world in which the climate is

18We could say that −∂3Vt+1/∂µ
2
t+1∂Tt+1 ≥ 0 when the agent is “cross-prudent” in her expectations of

climate sensitivity with respect to temperature: the agent prefers to attach a mean-zero shock to expected
climate sensitivity (due, for instance, to a more precise signal) to a state with lower temperature than to
a state with higher temperature. However, note that we are here considering the derivatives of the value
function rather than of per-period utility. For more on cross-prudence, see Gollier (2010).

19This signal smoothing effect is related to the wealth effect described in Gollier et al. (2000) and Gollier
(2001, Chapter 25). These analyses emphasize how increasing the informativeness of an anticipated signal
induces precautionary saving but also reduces saving by increasing expected wealth, due to an enhanced
ability to optimize in response to the signal. We see the precautionary effect in the Covt(Tt+1, µt+1) term
analyzed above.

20This logic is identical to the logic driving the consumption-based capital asset pricing model (Lucas,
1978; Breeden, 1979). There, we judge stocks to be risky based not on the variance of their returns but on
the covariance of their returns with marginal utility. Stocks that pay off when marginal utility is high (i.e.,
when consumption is low) act as valuable hedges, which reduces the expected return that investors require
to hold the stocks. Stocks that pay off when marginal utility is low (i.e., when consumption is high) make
consumption more volatile, which increases the expected return that investors require to hold the stocks.

21See Gollier (2012), Litterman (2013), Weitzman (2013), Dietz et al. (2015), and Lemoine (2015) for
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very responsive to emissions (s is large), then we might expect emissions to have a strong
effect on temperature (∂Tt+1/∂et to be large) and additional warming to be especially costly
(−∂Vt+1/∂Tt+1 to be large). In this case, the covariance is positive and the insurance channel
increases the value of emission reductions. This is the story analyzed in previous theoretical
literature (Howarth, 2003; Sandsmark and Vennemo, 2007; Becker et al., 2010; Gollier, 2012;
Dietz et al., 2015; Lemoine, 2015).22

3.3 Active learning

Finally, consider the terms on the bottom line of equation (3). These terms are nonzero only
if emission decisions affect the mean and/or the variance of future beliefs.23

The first term on the bottom line of equation (3) accounts for how emissions change
mean beliefs. Passing the expectation operator through, we have:

Et

[
−∂Vt+1

∂µt+1

∂µt+1

∂et

]
=Covt

[
−∂Vt+1

∂µt+1

,
∂µt+1

∂et

]
.

This expression recognizes that Et [∂µt+1/∂et] = 0, because a Bayesian policymaker cannot
expect to learn in a particular direction or else she should have already updated her beliefs. If
states in which additional emissions lead the policymaker to substantially raise her estimate
of the climate’s sensitivity to emissions (∂µt+1/∂et is large) correspond to states in which
these larger estimates are especially costly (−∂Vt+1/µt+1 is large), then the covariance is
positive and the policymaker reduces optimal emissions so as to avoid learning as rapidly.
This story is in fact a plausible one: we would expect additional emissions to provide better
signals when s is large, and because large s corresponds to large Tt+1, we might expect the
welfare cost of higher mean estimates to be greater when s is larger. Intuitively, generating
additional information through additional emissions increases risk: time t+ 1 beliefs become
more variable from the perspective of time t. If the marginal cost of mean climate sensitivity
(−∂Vt+1/∂µt+1) is constant, then this additional risk does not reduce expected welfare, but

consideration of uncertainty about future consumption growth.
22The story could become more complicated once we realize that large s also implies that the climate has

high inertia: as described in the scientific literature (e.g., Hansen et al., 1985; Raper et al., 2002; Baker
and Roe, 2009; Urban and Keller, 2009), the climate system’s response time falls when s increases because
oceans at first absorb much of the additional heat from an increase in carbon dioxide. This increase in inertia
would complicate our intuition about the sign of the covariance, because additional inertia should affect both
derivatives in the covariance.

23In order for emissions to affect beliefs, emissions must interact with the uncertain parameter to determine
the signal which the policymaker uses to update beliefs. If time t+ 1 temperature depends on emissions and
climate sensitivity in a separable fashion, then the policymaker’s ability to learn about climate sensitivity
is not affected by decisions about emissions. In contrast, if carbon dioxide and climate sensitivity enter the
temperature transition multiplicatively, then the marginal effect of s on temperature changes with the level
of emissions. In this case, greater emissions can help the policymaker to back out the true value of s.

11 of 30



Lemoine and Rudik Uncertainty and Climate Change October 2016

if the marginal cost of mean climate sensitivity is larger when the mean is higher, then this
additional risk is undesirable. The policymaker then reduces emissions in order to avoid
bearing this additional risk introduced by anticipated learning.

The second term on the bottom line of equation (3) captures how additional emissions
generate information that allows the policymaker to develop more precise beliefs. Passing the
expectation operator through and recognizing that the evolution of Σt is here deterministic,
we have:

Et

[
−∂Vt+1

∂Σt+1

∂Σt+1

∂et

]
= Et

[
−∂Vt+1

∂Σt+1

]
∂Σt+1

∂et
.

The term −∂Vt+1/∂Σt+1 captures the value of information. It is positive because information
has positive value. The term ∂Σt+1/∂et captures how emissions affect the variance of beliefs.
It is negative when additional emissions allow for faster learning, as in many integrated
assessment models. In that case, this active learning channel increases optimal emissions
(and reduces the optimal tax on emissions) so as to generate additional information. This
is the active learning channel that informal discussions in the literature have focused on.

This last channel is also the first channel that we have analyzed in which the most
plausible consequence is to increase optimal emissions and thus reduce the optimal tax on
emissions.24 Therefore, when the climate’s sensitivity to emissions is uncertain, we should
expect this uncertainty to increase the optimal tax on emissions in the absence of learning;
we should expect the introduction of passive learning (the anticipated and exogenous ar-
rival of information) to further increase the optimal tax on emissions; and we should expect
that the introduction of active learning (the endogenous generation of information) could
reduce the optimal tax on emissions. We next quantify these channels in an extension of a
benchmark integrated assessment model before reviewing the results of previous literature.
Several of these channels depend on third derivatives and on cross-derivatives, so it is im-
portant to solve recursive climate-economy models with computational methods that do not
a priori constrain these higher derivatives and cross-derivatives. We discuss computational
approaches in Section 6.

4 Quantifying the Implications of Uncertainty for Pol-

icy

We now quantify the channels analyzed in Section 3 in a recursive extension of the bench-
mark DICE integrated assessment model of Nordhaus (2008). The DICE model couples
a Ramsey-Cass-Koopmans growth model to calibrated modules that describe the transfer
of carbon dioxide between the atmosphere and the ocean and that describe the evolution

24The appendix shows that using Epstein-Zin-Weil preferences introduces a new channel that reflects
preferences over the temporal resolution of uncertainty. It explains why this channel is likely to increase the
optimal emission tax in standard calibrations.
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of atmospheric and oceanic temperature. Global warming reduces output directly. In each
period, the policymaker chooses consumption, savings, and abatement to maximize intertem-
poral welfare. Savings increase future output by increasing the capital stock, and additional
abatement increases future output by reducing future temperature. We extend DICE to
include uncertainty about the climate’s sensitivity to emissions. Following recent economic
(Hwang et al., 2014; Kelly and Tan, 2015) and scientific (Roe and Baker, 2007; Roe, 2009) lit-
erature, the uncertain parameters are the feedbacks that determine the climate’s sensitivity
to emissions. This uncertainty can generate fat tails in the distribution of climate sensitivity.
The appendix provides the complete model equations, and numerous other papers describe
the DICE model in more detail. The appendix also describes how we map the analysis of
Section 3 into this more complex numerical setting. Our model’s code is available online.

We find that uncertainty has only a small effect on the optimal emission tax. The optimal
emission tax in the year 2005 would be $7.80 per tCO2 in the absence of uncertainty (plotted
in the appendix), increasing very slightly to $7.87 per tCO2 in the presence of uncertainty,
and increasing further to $8.52 per tCO2 when the policymaker anticipates learning about
climate sensitivity. In the absence of uncertainty, the optimal tax would grow to $23.25 per
tCO2 after fifty years. When climate sensitivity is uncertain (and just happens to take its
mean value), the optimal tax grows to $23.46 per tCO2 after fifty years in the absence of
learning and to $24.57 per tCO2 in the presence of learning.25 Uncertainty does not have a
significant effect on savings.

We are, however, here more interested in the channels through which uncertainty matters
for policy than in the total magnitude of the effect. Figure 1 plots several of the channels
analyzed in Section 3. It does not include the insurance channel because it is always zero:
∂Tt+1/∂et is not uncertain because of how the DICE model formulates its temperature tran-
sition (see appendix).26 Both panels of the figure plot the evolution of each component when
climate sensitivity takes its mean value (unbeknownst to the policymaker).

The left panel plots the components in the absence of learning. In this case, the mean
belief µt does not evolve, so the signal smoothing and active learning channels are zero. As
expected, the precautionary abatement channel does increase the optimal emission tax, but
only by a very small amount. The variance of temperature at time t + 1 is always fairly
small from the perspective of time t, in part because the climate system’s inertia means that
uncertainty about climate sensitivity takes time to manifest as temperature. The important
channel is the adjustment for future uncertainty. This channel is the dominant one because
high or low values for climate sensitivity take time to manifest as warming. Raising emissions

25Kelly and Tan (2015) report that uncertainty has larger consequences for emission policy. Because they
use a model that is structurally different from DICE, it is difficult to be sure where these differences stem
from. Our results are similar to the small consequences of uncertainty in Hwang et al. (2014).

26Note, however, that ∂Tt+x/∂et is uncertain for x > 1, so the insurance channel is one of the components
of the uncertainty-adjustment channel. We find that this channel is positive but very small when we consider
x = 2. The small magnitude is likely due to the climate system’s inertia.
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Figure 1: The channels that determine how uncertainty about the climate’s sensitivity to
emissions changes the optimal emission tax, for settings without learning (left) and with
anticipated learning (right). All simulations fix random variables at their mean values.

at any given time t has a strong effect on temperature only after several periods, which shows
up by changing the continuation value Vt+1. The uncertainty adjustment grows stronger
over time as the impacts of higher emissions become more imminent. In principle, one could
decompose the uncertainty adjustment into contributions from insurance and precautionary
abatement motives.

The right panel plots the components when the policymaker anticipates learning. Now
the mean belief µt evolves with observations of temperature. The adjustment for future
uncertainty is still the largest single component, again reflecting the delayed consequences of
climate sensitivity for temperature. The precautionary abatement channel again increases
the optimal emission tax. It is larger than it was in the absence of learning, largely because
the covariance between temperature and mean beliefs is nontrivial. The precautionary abate-
ment channel increases over the first half of the century. There are two competing effects
governing how the precautionary abatement channel evolves over time. First, uncertainty
about the climate sensitivity declines with learning, weakening precautionary motives. Sec-
ond, warming over the first few decades raises the subjective variance of future temperature
and strengthens the covariance between future temperature and the mean of our future be-
liefs, strengthening the precautionary abatement channel. The latter effect dominates the
first effect over the coming century.
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We also see three channels absent from the case without learning. First, the signal
smoothing channel increases the optimal emission tax because the policymaker delays emis-
sions in order to take advantage of new information about climate sensitivity. To our knowl-
edge, this signal smoothing motive has not been discussed in previous work with recursive
models. Second, the mean-belief component of the active learning channel increases the opti-
mal emission tax because improving the informativeness of the temperature signal (through
higher emissions) creates additional risk. Third, the belief-precision component of the active
learning channel reduces the optimal emission tax because the policymaker can learn faster
by increasing emissions.27 Each component of the active learning channel strengthens over
the first several decades as the variance of temperature and thus the variance of the mean of
future beliefs each increase, before beginning to dissipate as the policymaker hones in on the
true climate sensitivity. These signs for the signal smoothing and active learning channel’s
components were considered to be the most likely signs in the discussion in Section 3, and
we see that the active learning channel always nets out to a positive value. Thus, we see
that the introduction of passive learning works to raise the optimal emission tax and that
making learning active then raises the optimal emission tax by a bit more.

5 The First Wave of Research with Recursive Models

We have thus far demonstrated how to use the value function to extract information about
the channels through which uncertainty affects policy. We now review the main takeaways
from previous work before discussing computational methods and suggesting directions for
future work.

Figure 2 provides a timeline of published (black) and as-yet-unpublished (gray) work that
uses recursive IAMs. A few observations emerge. First, Kelly and Kolstad (1999b) were far
ahead of the rest of the literature. Only one other paper (Leach, 2007) was published using
recursive techniques before 2013. Second, Christian Traeger’s research led the resurgence of
recursive IAMs. He published 5 papers (with coauthors) in this decade before anybody else
had published one. Third, recursive IAMs are now hot. We count fifteen published papers
and eight unpublished working papers since 2013, with only two published papers prior to
2013.

We now summarize what we see as the main lessons of this work. We focus on qualitative
takeaways because model structures differ across papers and because these papers do not all

27In the DICE model, both parts of the active learning channel are implicitly captured by all the other
channels when valuing the impact of time t emissions on the time t + 1 expected continuation value. The
appendix shows how the time t + 1 variance and mean of the uncertain parameter are functions of time t
temperature, which is a function of time t−1 emissions, so that the active learning channel is only explicitly
present when looking two periods ahead. The optimal time t emission tax is the sum of the other plotted
components (i.e., not including the active learning channel) and the certainty-equivalent tax. To assess the

active learning channel, we plot −β Et
[
∂Vt+2

∂µt+2

∂µt+2

∂Tt+1

∂Tt+1

∂et

]
and −β Et

[
∂Vt+2

∂Σt+2

∂Σt+2

∂Tt+1

∂Tt+1

∂et

]
.
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Figure 2: Timeline of publications (black) and as-yet-unpublished working papers (gray)
that use recursive climate-economy integrated assessment models.

report comparable experiments.

1. Using common calibrations of recursive utility strongly reduces optimal emissions. Re-
cursive utility, often implemented as Epstein-Zin-Weil (Epstein and Zin, 1989; Weil,
1989) preferences, separates risk aversion from the elasticity of intertemporal substitu-
tion, whereas the standard expected utility representation forces one to be the recipro-
cal of the other. Common calibrations set the elasticity of intertemporal substitution
at a value strictly greater than 1 and set relative risk aversion to an even greater value.
Much work has shown that increasing the elasticity of intertemporal substitution from
standard expected utility calibrations strongly increases the optimal emission tax by
reducing the consumption discount rate, and the high level of risk aversion (along with
the implied preference for an early resolution of uncertainty) can also make policy es-
pecially sensitive to uncertainty (Cai et al., 2013; Crost and Traeger, 2014; Jensen and
Traeger, 2014; Cai et al., 2016). The appendix extends the analysis of Section 3 to the
case of recursive utility.

2. Other attitudes towards uncertainty matter less than does the adoption of recursive
utility, probably because they do not affect the consumption discount rate as directly.
In particular, a preference for robustness to alternative damage functions (Rudik, 2016)
and aversion to ambiguity about a potential tipping point (Lemoine and Traeger,
2016a) each affect policy less than does the adoption of recursive utility.

3. In the expected utility framework, uncertainty about a scaling coefficient in climate
damages and uncertainty about consumption growth each affect optimal policy less
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strongly than does uncertainty about ultimate warming, which affects optimal policy
less strongly than does uncertainty about how quickly damages increase with warming.
Compare Crost and Traeger (2014), Jensen and Traeger (2014), and Kelly and Tan
(2015).28 All but one of these types of uncertainty increase the optimal emission tax.
The exception is uncertainty about the damage function’s scaling parameter.29

4. Fat-tailed uncertainty about future warming can reduce optimal emissions by a sub-
stantial amount, but the size of the effect is sensitive to our ability to learn about future
warming (Hwang et al., 2014; Kelly and Tan, 2015). Uncertainty about warming also
increases the cost of agreeing to inflexible limits on total warming rather than using
new information to control policy optimally (Fitzpatrick and Kelly, 2016).

5. The policy implications of tipping points that affect the physical climate system vary
strongly over plausible consequences of tipping and over assumptions about our ability
to learn about tipping points, either prior to triggering them (Lemoine and Traeger,
2014) or after having triggering them (Lemoine and Traeger, 2016b). These policy
implications also depend on whether deploying “geoengineering” technologies can mit-
igate the consequences of tipping (Heutel et al., 2016).

6. Allowing warming to raise the chance of irreversible reductions in economic output
(Cai et al., 2013; Lontzek et al., 2015; Cai et al., 2016) or in environmental quality
(Cai et al., 2015) can strongly reduce optimal emissions. This effect is especially strong
under common calibrations of recursive utility (Cai et al., 2013, 2016).

6 Computational Discussion

The first wave of recursive IAMs explored the implications of different types of uncertainty
for optimal emissions. We here describe the computational techniques used in this literature
and point to improvements that could enable a second wave of research to ask questions that
require more complicated models.

The standard solution technique used in the literature is value function iteration. Begin
by supposing we have an infinite-horizon problem. Using the setting of Section 3, the Bellman

28But see our results in Section 4.
29Lemoine (2015) directly compares the implications of uncertainty about warming, uncertainty about

the future variability of the weather, and uncertainty about future consumption growth for the social cost
of carbon, rather than for the optimal emission tax. He shows that all increase the social cost of carbon,
that uncertainty about consumption growth is the quantitatively most important of the three, and that
precautionary abatement motives are more important than insurance motives. His work does not use a
recursive IAM, which is why he does not analyze the optimal emission tax.
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equation (1) becomes

V (Tt) = max
et

{
ut(et;Tt) + Et

[
β V (Tt+1)

]}
, subject to Tt+1 = f(Tt, et, εt+1; s). (5)

A unique solution, V (Tt), to equation (5) exists if u is real-valued, continuous, and bounded;
β ∈ (0, 1); and the feasible set of states for the next period is compact (Judd, 1998). Al-
ternative sets of assumptions that guarantee a unique solution can be found in Stokey and
Lucas (1989). We can ensure that the solution is approached in the limit as j → ∞ by
iterating on V as follows:30

Vj+1(x) = max
et

{
u(et;Tt) + Et

[
β Vj(Tt+1)

]}
.

If we have some arbitrary value function Vj, we can insert it into the right-hand side of the
Bellman equation and undertake the maximization to recover a new value function Vj+1. If
we repeat this process, we can eventually converge to the true value function for any initial
V0 (Judd, 1998). This is how the value function iteration algorithm works. In practice,
however, this algorithm may not work perfectly due to numerical error in the maximization
step or if the problem is ill-conditioned.

The first critical question is: how do we form a value function Vj? The conventional
approach is to approximate V with a set of orthogonal basis functions φ(T ):31

Ṽj(T ) =
N∑
i=1

cij φ
i
j(T ). (6)

ci ∈ R is the coefficient on the ith basis function. We solve for a new vector of ci in each
iteration j. To solve for N unknown scalars, we need at least N equations. Specifically,
we will have N copies of equation (6), but evaluated at different points on a grid that we
construct in our state space. We can write these N equations in matrix form as

Vj = Φj cj,

where Vj and cj are N × 1 and φj is N ×N . The vector of coefficients is solved by a simple
matrix inversion:

cj = Φ−1j Vj.

In value function iteration, we assume some initial c0, maximize the right-hand side of
the Bellman equation at N points in the state space, use the resulting vector of maximized

30Note that the subscript j here indexes the iteration, not time.
31The Stone-Weierstrauss theorem tells us that every continuous function on a closed interval can be

approximated arbitrarily well by a polynomial.
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values V1 to obtain a new vector of coefficients c1, and repeat until a predefined convergence
criterion is satisfied.

Solving a finite-horizon problem works in a similar fashion. We begin with some terminal
value function Ṽτ (Tτ ). If τ is sufficiently large and the policymaker discounts the future
at some nonzero rate, then the choice of this value function will not matter for policy and
welfare over some earlier, shorter horizon. The next step is to maximize the Bellman at
time τ − 1, which yields a vector of maximized values Vτ−1 that are used to recover the
vector cτ−1 and construct the time τ−1 value function approximant. We repeat the process,
stepping back in time until time 0. At this point, we have a vector of coefficients (and thus
a value function approximant) for every time period from 0 to τ .

The final question to answer is: how do we select our orthogonal basis functions and our
set of points in the state space? The convention is to use Chebyshev polynomials for the
basis functions and Chebyshev zeros for the points in the state space (after mapping the
domain of the state space into the domain of the Chebyshev polynomials [−1, 1]), because
of their favorable approximation properties when used together (Judd, 1998; Miranda and
Fackler, 2002).32 For each dimension d, we select a degree nd Chebyshev polynomial and
locate the nd grid points at the nd zeros of the polynomial. To construct the full polynomial
and grid, we take a tensor product of the unidimensional polynomials and grid points. Other
approximating functions used in the literature include neural networks (Kelly and Kolstad,
1999b, 2001), which can be universal approximators of continuous functions on compact
sets, and splines (Fitzpatrick and Kelly, 2016), which have advantages if the value function
is non-differentiable and which can target regions of the state space over which the value
function is especially curved.33,34

32Boyd’s Moral Principle (Boyd, 2000) essentially says to always use a Chebyshev basis, unless you are
exceptionally sure that another basis is better for your problem (Fernández-Villaverde et al., 2016).

33Traeger (2014) compares cubic spline and Chebyshev bases. Cubic splines are the most common choice
of spline basis. These ensure continuous first and second derivatives, and they restrict the third derivative to
be piecewise constant. However, we have seen that the third derivative of the value function plays a critical
role in determining policy under uncertainty. The choice of cubic splines may therefore not be innocuous.

34Some recent papers have adopted nonstandard approaches to solving the Bellman equation, such as using
“logarithmic”, state-separable basis functions (Hwang et al., 2013, 2014; Hwang, 2016) and fixing policy for
some number of periods before approximating the remaining continuation value as a linear function of the
per-period payoff (Heutel et al., 2015, 2016). We here caution against using less theoretically grounded
methods for three reasons. First, several orders of value function derivatives and cross-derivatives matter
for policy (see Section 3), and these alternative methods severely constrain these derivatives. Second, it is
possible to “solve” a Bellman equation within a particular algorithm but for the solution to be incorrect.
It is difficult to verify whether a solution to the approximated Bellman equation is correct, and theorems
about function approximations provide extra confidence in the case of standard methods. Third, some of
these methods may work in particular cases of a particular model, but they will almost surely not work in
general cases. Yet the solutions can only be tested against known ones in particular (often deterministic)
benchmark cases, even as a given paper is interested in the difference between a benchmark case and some
other case. It is hard to know whether the cases of interest in a given paper are also particular cases in which
the alternative algorithm happens to work and to know whether the reported differences in, for example,
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6.1 Frontier Techniques

There are several drawbacks to the basic value function iteration approach outlined above.
One is that it is typically slow, particularly if the discount factor β is near 1, as is common
in models with an annual timestep. A second is that the computational complexity of the
problem increases exponentially in the dimension of the state space (commonly referred to
as the Curse of Dimensionality). In the interest of advancing the literature, we here describe
some ways to reduce the computational cost and/or improve the accuracy of the standard
tensor product approximation approach described above.35

Recall that we created our grid of points in the state space with a tensor product. Our
grid has nd elements if we have n unique points on each state and d states. Adding more
states to the model rapidly increases the number of grid points and thus the number of
required Bellman maximizations. This computational cost has limited IAMs. Researchers
have circumvented this problem by finding clever ways to reduce the dimensionality of a
complex climate-economy model. For example, Kelly and Kolstad (1999b) and Traeger
(2014) employ models with one- and two-state climate systems instead of the five-state
climate system of the DICE model (which is already a coarse approximation to full climate
models).36

There are ways to reduce computation time without sacrificing model complexity. A
simple way is to supply the solver used in the maximization step with gradient and Hessian
information.37 Most solvers allow the user to give analytic gradients and Hessians so that the
solver no longer needs to approximate them, thereby improving both accuracy and speed.
However, solving for these functions by hand, particularly in complex models like IAMs,
can be troublesome and prone to human error. Autodifferentiation is a powerful technique
that exploits the arithmetic structure of computer code to automatically generate gradients
and Hessians. Since all programs are a combination of basic operations such as addition or
exponentiation, we can use another pre-packaged autodifferentiation program to repeatedly
apply the chain rule to arbitrary computer code in order to take derivatives of any program.

policy between these cases and the benchmark are due to the numerical methods.
35Many techniques common in other settings are often not helpful in solving integrated assessment models.

First, Euler equation methods often do not help because IAMs contain more states than controls. Second,
shape-preserving methods (Judd and Solnick, 1994; Cai and Judd, 2012) are often not justified because we
do not know in advance that the value function is, for example, concave, and we may even know that it is
not concave everywhere (due to nonlinearities in the forcing equation, for example). Third, policy iteration
can be challenged by the likelihood of binding constraints and has not worked well in practice.

36These papers solve an infinite-horizon model with fewer states than the full model. Lemoine and Traeger
(2014) approximate the omitted states as functions of the tracked states. Other papers have used finite-
horizon methods that do not require iterating over the full grid of nodes as many times (e.g., Cai et al.,
2012). Recent work has used sparse grids (discussed below) to solve a finite-horizon version of a full IAM
(Rudik, 2016).

37Economists could also take greater advantage of high-performance computing facilities (Dongarra and
van der Steen, 2012).
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This can greatly reducing the potential for error in hand-coding these functions.
For infinite-horizon problems, we can accelerate convergence of the value function it-

eration algorithm outlined above by using a technique called “modified policy iteration”.
Modified policy iteration exploits two facts. First, maximizing the Bellman equation is
the costly step in the algorithm. Second, the optimal policy function corresponding to the
Bellman in iteration j will be very close to the optimal policy function for the Bellman in
iteration j+ 1, especially on the grid of interest. Instead of maximizing the Bellman in each
iteration to recover a new optimal policy, modified policy iteration periodically reuses the
previous iteration’s optimal policy to get the “maximized” Bellman value and solve for a
new vector of coefficients for iteration j + 2. Puterman and Shin (1978) demonstrate that
this method will converge at least as fast as standard value function iteration.

A critical decision for speed and accuracy is the domain of the value function approximant.
Selecting a domain that is wider than necessary will result in worse accuracy for a given grid,
but selecting a domain that is too narrow can lead the solver to evaluate states that lie outside
the domain of the approximant, where accuracy deteriorates. A general rule of thumb is to
make the domain only as large as it needs to be to ensure that relevant areas of the state
space do not transition outside the domain and to ensure that calculating expectations does
not require placing too much weight on points outside the domain. If the domain is any
larger, then we are fitting the value function in regions of the state space where we may
never travel in simulations, which increases the computational burden with no benefit.

Some techniques adapt the domain of the value function approximant to the domain
of simulated trajectories. The domain of the standard tensor product grid is shaped as a
hypercube, but the domain of the simulated trajectories may not be. For example, they
may be clustered along a diagonal of the grid in a three dimensional problem. In this case,
large areas of the domain may never be reached in the simulations. Placing grid points in
these regions adds computational cost with little benefit in improving the accuracy of our
simulated outcomes. This tradeoff becomes especially important as the dimensionality of
the problem increases.

Once we obtain the set of simulated trajectories from an existing solution to our model,
perhaps from a version that uses a hypercube-shaped grid, we can adapt the domain of
the value function approximant by using a change of coordinates. Judd et al. (2014b) and
Maliar and Maliar (2015) propose a principal component transformation of the simulated
data to rotate the coordinate system of the domain. When a hypercube is fit around the
simulated points in the principal components system, the grid points are packed tightly into
the important regions of the state space, allowing the modeler to obtain an approximation
of the same accuracy but with fewer grid points.

In finite-horizon problems, a modeler can construct a time-adaptive grid. In the example
of our simple IAM presented earlier, the only area of the state space we are concerned about
at the initial time t = 0 is T0. The domain of the value function at time t = 0 can be tightly
bound around that value. Moving forward to time t = 1, the transition equations govern
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the maximum and minimum possible temperature, which tells us how big the domain could
possibly need to be conditional on the variance of the temperature shocks. In general, the
domain becomes wider as we move forward in time to account for sequences of shocks that
may reinforce each other.

Economists have recently begun to explore sparse grids (Smolyak, 1963; Krueger and
Kubler, 2004; Judd et al., 2014b; Rudik, 2016). Sparse grids are constructed similarly to the
standard tensor product grid; however, they omit certain subspaces of the full tensor product
grid that are less important for approximation quality. The benefit of sparse grids is that
the number of grid points only increases polynomially in the dimensionality of the problem.
Although they use fewer grid points, sparse grids can be very accurate (Barthelmann et al.,
2000). Indeed, one can think of sparse grids as the solution to an optimization problem:
for an exogenously given number of nodes, find the approximation space that yields the
greatest accuracy in terms of the L2 and L∞ norms, within the space of functions with
bounded second-order mixed derivatives (Brumm and Scheidegger, 2016).38 Sparse grids
promise significant computational savings relative to standard methods.

7 The Second Wave of Research with Recursive Mod-

els

The first wave of research with recursive IAMs devoted substantial efforts to solving models
with a single type of uncertainty. We have suggested that frontier techniques can open up
a broader range of modeling possibilities. Recent work has begun applying such techniques
to ask questions about model uncertainty (Rudik, 2016) and to calibrate the evolution of
knowledge to the record of scientific progress (Lemoine et al., 2016). We here suggest some
potentially helpful directions for a second wave of work with recursive IAMs, most of which
depend on the ability to solve models with dramatically larger state spaces than used in the
first wave of research.

1. Recursive IAMs should better model learning. Standard IAMs dramatically simplify
the evolution of the climate and the economy, and recursive IAMs dramatically sim-
plify the evolution of knowledge. This simplification is potentially critical because,
as implied by Section 3, assuming that learning occurs too rapidly or that additional
emissions generate too much information can qualitatively change policy conclusions.
Actual knowledge about, for instance, future warming has been limited by the incom-
pleteness of scientific observations, by the combination of complexity and coarseness in
numerical climate models, and by the presence of multiple, potentially correlated un-
certain parameters (e.g., climate sensitivity, ocean heat content, and aerosol forcing).
Future work with recursive IAMs should seek not just to model the climate system but

38The bounded mixed derivative condition is met in most finite-horizon versions of the DICE model.
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to model those features of the climate system that make climate science hard. Such
work can answer important, but often overlooked, policy questions about the value
of scientific monitoring and the optimal types of monitoring. As but one example,
allowing for hidden states could be critical to asking questions about the value of an
ocean monitoring system.

2. Economic uncertainties are more severe than scientific uncertainties, and are potentially
as important for policy. Looking out 100 years, the overall quality of technology,
the level of consumption, the quality of abatement technology, and preferences over
environmental quality are at least as uncertain as any scientific aspect of the climate.
Such uncertainties are very difficult to adequately calibrate or model, but doing so
seems critical. Some of these uncertainties could be calibrated from asset prices, and
others could be calibrated from historical time series.

3. Some of the most pressing unknowns relate to the possibility of catastrophes. In par-
ticular, many worry about the potential for abrupt, irreversible changes in the climate
system (“tipping points”) and about the potential for large declines in environmental
quality or consumption in response to future warming. Thus far, work on physical tip-
ping points has used reduced-form representations of the tipping process, and work on
catastrophes has used either permanent shocks to output or reduced-form uncertainty
about the curvature of the damage function. Future work should attempt a more struc-
tured approach to each problem, which may require extending IAMs to more faithfully
represent the actual sources of information about these possible events as well as the
actual, nonlinear mechanisms through which these events would unfold.

4. Future work should consider moving beyond the DICE model. To date, perhaps all
recursive IAMs either have used variants of the DICE model (Nordhaus, 1992, 2008)
or have used still simpler models. The DICE model has been an enormously valuable
benchmark, and its transparent structure has been a boon to qualitative understanding.
We showed above how to decompose the value function to glean theoretical insight from
recursive settings. This type of approach to recursive modeling promises qualitative
insight even from settings more complicated than DICE. Further, policymaker are in
fact using IAMs for their quantitative policy conclusions (Greenstone et al., 2013). It is
important to know how greater realism affects these numbers. Future advances in IAMs
should consider extending benchmark settings to allow for features like multisector
economies, endogenous or directed forms of growth, more realistic scientific modules,
and a treatment of space. But this effort should be disciplined. The community
should first aim to develop a set of stylized facts about asset prices, climate science,
and economic activity that integrated assessment models should replicate.

We see the emerging potential to integrate these next-level considerations into full IAMs and
to ask new questions that take the information structure of climate change as seriously as
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the best-guess physical dynamics. We encourage recursive modelers to exercise creativity in
moving towards these and other new directions.
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Appendices

The first appendix extends our theoretical analysis to the case of Epstein-Zin-Weil prefer-
ences. The second appendix describes our implementation of the DICE integrated assessment
model and demonstrates some best practices.

Appendix A: Extension to Epstein-Zin-Weil Preferences

Epstein-Zin-Weil preferences (also called “recursive utility”) allow for separation between
preferences for smoothing consumption over risk and over time: they disentangle risk aversion
from the elasticity of intertemporal substitution. Let ψ be the Arrow-Pratt measure of
relative risk aversion and η be the reciprocal of the intertemporal elasticity of substitution.
With Epstein-Zin-Weil preferences, the main text’s Bellman equation becomes
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for some consumption function ct(et;Tt). Expected utility corresponds to the special case of
ψ = η. The first-order condition becomes
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((1− η)Vt+1)

1−ψ
1−η

])ψ−η
1−ψ

Et

[
((1− η)Vt+1)

η−ψ
1−η

(
∂Vt+1

∂Tt+1

∂Tt+1

∂et
+
∂Vt+1

∂µt+1

∂µt+1

∂et
+
∂Vt+1

∂Σt+1

∂Σt+1

∂et

)]
.

After a second-order Taylor expansion of the second term, the right-hand side becomes:

− β
(
Et

[
((1− η)Vt+1)

1−ψ
1−η

])ψ−η
1−ψ

Et

[
((1− η)Vt+1)

η−ψ
1−η

] channels from main text︷ ︸︸ ︷
Et

[
∂Vt+1

∂Tt+1

∂Tt+1

∂et
+
∂Vt+1

∂µt+1

∂µt+1

∂et
+
∂Vt+1

∂Σt+1

∂Σt+1

∂et

]
+ β

(
Et

[
((1− η)Vt+1)

1−ψ
1−η

])ψ−η
1−ψ

Covt

[
((1− η)Vt+1)

η−ψ
1−η , −

(
∂Vt+1

∂Tt+1

∂Tt+1

∂et
+
∂Vt+1

∂µt+1

∂µt+1

∂et
+
∂Vt+1

∂Σt+1

∂Σt+1

∂et

)]
︸ ︷︷ ︸

preference for temporal resolution

.

The first line is as analyzed in the main text, with all channels adjusted by the factor(
Et

[
((1− η)Vt+1)

1−ψ
1−η

])ψ−η
1−ψ

Et

[
((1− η)Vt+1)

η−ψ
1−η

]
.

Note that this factor is 1 in the case with ψ = η, which corresponds to the case of expected
utility analyzed in the main text. The second line is novel. It is zero when ψ = η, which
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explains why it is absent from the main text’s analysis of a setting with expected utility.
When ψ > η, the policymaker displays a preference for early resolution of uncertainty: she
would pay money just to obtain information about a future risk sooner, even when she
cannot act on that information. The covariance captures how the marginal value of emission
reductions covaries with welfare. The second line increases the optimal emission tax if and
only if this covariance is positive. When ψ > η (as in standard calibrations), the covariance
is positive when large Vt+1 pairs with a small marginal value of emission reductions. For
example, the covariance is positive when small values for climate sensitivity imply both high
welfare and a small marginal value of emission reductions. We might in fact expect this
combination to be the case, in which case the preference for temporal resolution channel
increases the optimal emission tax. Intuitively, when the covariance is positive, reducing
emissions smooths future welfare outcomes because it increases welfare most strongly in
states with low welfare. Additional emission reductions thus help to resolve uncertainty
about future welfare at an earlier date, and a policymaker with ψ > η will pay for this
earlier resolution of uncertainty.

Figure A-1 plots the quantitatively important channels in this setting with Epstein-
Zin-Weil preferences. The left panels keep relative risk aversion at its DICE value of 2
but increase the elasticity of intertemporal substitution to 2/3, and the right panels keep
the elasticity of intertemporal substitution at its DICE value of 1/2 but increase relative
risk aversion to 3. These changes are in the same direction as changes suggested by some
recent asset pricing models. The top panels plot the case of persistently uncertain climate
sensitivity, and the bottom panels allow the policymaker to learn about climate sensitivity
from observations of temperature (and to anticipate that she will do so). The active learning
channel is constructed in the same way as in the main text’s case of expected utility. Raising
relative risk aversion does not affect the certainty-equivalent emission tax, but by reducing
the consumption discount rate, raising the elasticity of intertemporal substitution increases
the certainty-equivalent tax by over 40% (around $3.25 per tCO2) in the first period. In
all cases, the temporal resolution channel is positive (as expected) but very small, in part
because we do not change preferences by a large amount. The other channels are qualitatively
similar to those in the main text’s case of expected utility. We note three differences. First,
by making the policymaker more sensitive to the risk induced by future revisions to beliefs,
raising relative risk aversion increases the size of the signal smoothing channel in early years
and leads it to decline monotonically over time (when random variables happen to take on
their mean values). Second, raising relative risk aversion reduces the uncertainty adjustment
by a bit. Third, raising relative risk aversion also makes the mean-belief component of
the active learning channel start off negative, which makes active learning reduce the first
period’s optimal emission tax. These last two effects are a bit of a puzzle, but they could
be related to how a preference for early resolution of uncertainty makes the policymaker
dislike persistent shocks to mean beliefs, which are especially likely early on and, owing to
interactions with inertia, when climate sensitivity is small.
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Figure A-1: The channels that determine how uncertainty about the climates sensitivity
to emissions changes the optimal emission tax, for settings without learning (top row),
with anticipated learning (bottom row), with less desire to smooth consumption over time
(left column), and with greater aversion to risk (right column). All simulations fix random
variables at their mean values.
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Appendix B: The DICE Model

We now describe the model equations and calibration. We then extend our theoretical
analysis of the channels through which uncertainty affects policy to the full numerical setting.
We conclude with best practices for validating recursive models.

The DICE model is a Ramsey growth model coupled to a climate module. An infinitely
lived representative agent aims to maximize the sum of the stream of discounted utility
from consuming output. In decade t, the agent begins with some level of capital Kt. To
produce gross output Y g

t , the agent combines capital with labor Lt and technology At in a
Cobb-Douglas production function:

Y g
t = At L

1−κ
t Kκ

t .

Some of this output is lost to damages caused by surface warming T st , so that output net of
damages is given by

Y n
t =

Y g
t

1 + b2 [T st ]b3
.

The agent can allocate her net output to consumption Ct or emissions abatement αt, with
residual output invested towards future capital, which depreciates at an annual rate δk.
Per-period utility is:

u(Ct;Lt) = Lt
(Ct/Lt)

1−η

1− η
,

with η ≥ 0, 6= 1. Emissions et (net of abatement) are

et = 10 ∗ [σt(1− αt)Y g
t +Bt] ,

where Bt gives exogenous emissions at time t and σt is the emission intensity of production
at time t. We will constrain abatement to be less than the emissions generated by factor
production. Emissions enter the atmospheric CO2 stock Matm

t . Between decades, CO2 mixes
between the atmospheric reservoir and reservoirs in the upper (Mup

t ) and lower (M lo
t ) ocean.

Additional atmospheric CO2 increases radiative forcing Ft(M
atm
t ), which measures energy

at the earth’s surface. Forcing is given by

Ft(M
atm
t ) = f2x log2(Matm

t /Mpre) + EFt,

where EFt is exogenous forcing from other long-lived greenhouse gases and f2x is the amount
of forcing from doubling CO2. Heat transfers between two reservoirs: one reservoir T st that
includes the earth’s surface and the upper ocean, and a second reservoir T ot that reflects the
lower ocean. Each reservoir’s rate of warming is determined by three parameters: C3 governs
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the heat loss from the surface to the lower ocean, C4 governs the heat loss from the lower
ocean to the surface, and C1 governs how quickly surface temperature responds to changes
in forcing or to differences in the surface-ocean temperature gradient.

The climate sensitivity s determines how much the earth eventually warms after doubling
of CO2. We model the climate sensitivity as in Roe and Baker (2007):

s =
λ0

1−∆
,

where λ0 is the climate sensitivity for a reference system (lacking earth system feedbacks)
and ∆ < 1 is the climate system’s feedback factor.

To admit a closed-form updating rule for beliefs, we take ∆ as the unknown parameter
instead of s and, following Roe and Baker (2007), we assume that the agent believes ∆ ∼
N (µt,Σt) at time t. Her ability to learn about the true value of ∆ is hindered by an
independent and identically distributed temperature shock εt ∼ N (0, σ2

T ). Each decade,
the agent updates the mean µt and variance Σt of her beliefs over ∆ by using a normal-
normal conjugate updating rule. The variance of her beliefs declines deterministically and
monotonically over time.39 However the mean of her belief at time t+ 1 is a function of the
unknown temperature in time t+ 1, so µt+1 is unknown at time t and evolves stochastically.

The model’s exogenous economic processes are

Lt = L0 + (L∞ − L0) gL,t (Labor population)

gL,t = [exp(δL t)− 1] /exp (δL t) (Labor population growth rate)

At = At−1/(1− gA,t) (Production technology)

gA,t = 10 gA,0 exp(−δA t) (Production technology growth rate)

where index t = 0 indicates the year 2005, t = 1 indicates the year 2015, and so on. The
model’s exogenous climate-related processes are

σt = σt−1/(1− gσ,t) (Gross emissions per unit of output)

gσ,t = gσ,0 exp(−δσ t) (Growth rate of gross emissions per unit of output)

ψt =
a0 σt
a1a2

(a1 − 1 + exp(−gΨ t)) (Abatement cost coefficient)

Bt = B0 g
t
B (Non-industrial CO2 emissions)

EFt = EF0 + 0.1 (EF1 − EF0) min(t, 10) (Exogenous forcing)

Table A-1 reports the values of the model parameters. The feedback mean is calibrated so
the implied climate sensitivity of 3◦C matches the DICE parameterization. We calibrate the

39The deterministic evolution of the variance is in a Markov sense. The agent knows the variance one
decade ahead since it is entirely a function of time t variables, but she does not know it two decades ahead
since Tt+1 is unknown.
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variance of the feedback term using the value in Roe and Baker (2007). The variance of the
decadal temperature shock is obtained from Kelly and Kolstad (1999b).
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Table A-1: The parameters of the dynamic stochastic DICE-2007 model.

Parameter Value Description

A0 0.027 Initial production technology
gA,0 0.009 Initial growth rate of production technology
δA 0.001 Change in growth rate of production technology
L0 6514 Year 2005 population (millions)
L∞ 8600 Asymptotic population (millions)
δL 0.35 Rate of approach to asymptotic population level
σ0 0.13 Initial emission intensity of output (Gigatons of carbon per unit output)
gσ,0 -0.073 Initial growth rate of decarbonization
δσ 0.003 Change in growth rate of emissions intensity
a0 1.17 Cost of backstop technology in 2005 ($1000 per ton of carbon)
a1 2 Ratio of initial backstop technology cost to final backstop technology cost
a2 2.8 Abatement cost function exponent
gΨ 0.05 Growth rate of backstop technology cost
B0 1.1 Initial non-industrial CO2 emissions (Gigatons of carbon)
gB 0.9 Growth rate of non-industrial emissions
b2 0.0028 Damage coefficient
b3 2 Damage exponent
EF0 -0.06 Year 2005 exogenous forcing (W/m2)
EF100 0.30 Year 2105 exogenous forcing (W/m2)
κ 0.3 Capital elasticity in production
δκ 0.1 Annual capital depreciation rate
Mpre 596.4 Pre-industrial atmospheric CO2 (Gigatons of carbon)
β 1/1.01510 Discount factor
η 2 1/EIS, and RRA in the entangled preferences case
φ11 0.811 Carbon transfer coefficient for atmosphere to atmosphere
φ12 0.189 Carbon transfer coefficient for atmosphere to upper ocean
φ21 0.097 Carbon transfer coefficient for upper ocean to atmosphere
φ22 0.853 Carbon transfer coefficient for upper ocean to upper ocean
φ23 0.050 Carbon transfer coefficient for upper ocean to lower ocean
φ32 0.003 Carbon transfer coefficient for lower ocean to upper ocean
φ33 0.997 Carbon transfer coefficient for lower ocean to lower ocean
C1 0.22 Warming delay parameter
C3 0.3 Parameter governing transfer of heat from ocean to surface
C4 0.05 Parameter governing transfer of heat from surface to ocean
f2x 3.8 Forcing from doubling of CO2 (W/m2)

Continued on next page
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Table A-1 – continued from previous page

Parameter Value Description

σ2
T 0.11 Temperature shock variance
K0 137 Year 2005 capital (trillions of USD)
Matm

0 808.9 Year 2005 atmospheric CO2 (Gigatons of carbon)
Mup

0 1255 Year 2005 biosphere and upper ocean CO2 (Gigatons of carbon)
M lo

0 18365 Year 2005 lower ocean CO2 (Gigatons of carbon)
T atm0 0.7307 Year 2005 atmospheric temperature (Degrees celsius)
T ocean0 0.0068 Year 2005 ocean temperature (Degrees celsius)
µ0 0.6 Year 2005 feedback prior mean
Σ0 0.132 Year 2005 feedback prior variance

We make two changes of variables to the model to reduce the computational burden.
These changes do not alter the DICE model but only how it is represented in the computer
code. In particular, we express both capital, Kt, and consumption, Ct, in terms of effective
labor and technology:

kt =
Kt

A
1/(1−κ)
t Lt

,

ct =
Ct

A
1/(1−κ)
t Lt

.

We keep utility in standard (not effective) terms so that the agent’s utility function is

u(ct;Lt, At) = LtA
(1−η)/(1−κ)
t

c1−η
t

1− η
.

The resulting problem yields the exact same solutions as the GAMS version of the DICE
model, once modified to use a Markov representation of the forcing equation.
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Our dynamic programming version of the DICE model is thus:

Vt(kt, T
s
t , T

o
t ,M

atm
t ,Mup

t ,M lo
t , µt,Σt) =

max
ct,αt

{
u(ct;Lt, At) + β E

[
Vt+1(kt+1, T

s
t+1, T

o
t+1,M

atm
t+1 ,M

up
t+1,M

lo
t+1, µt+1,Σt+1)

]}
subject to transitions:

kt+1 =
1

A
1/(1−κ)
t+1 Lt+1

[
(1− δk)10A

1/(1−κ)
t Lt kt + 10

(
(1− ψtαa2t )Y n

t − A
1/(1−κ)
t Lt ct

)]
,Matm

t+1

Mup
t+1

M lo
t+1

 =

φ11 φ21 0
φ12 φ22 φ32

0 φ23 φ33

Matm
t

Mup
t

M lo
t

+

et0
0

 ,
T st+1 = T st + C1

[
Ft+1(Matm

t+1 )− f2x
1−∆

λ0

T st + C3 (T ot − T st )

]
+ εt,

T ot+1 = C4 T
s
t + (1− C4)T ot ,

µt+1 =
Σt γtHt + σ2

T µt
Σt γ2

t + σ2
T

,

Σt+1 =
Σtσ

2
T

Σt γ2
t + σ2

T

,

where

γt =
C1 f2xT

s
t

λ0

,

Ht = T st+1 −
(
T st + C1

[
Ft+1(Matm

t+1 )− f2x
1

λ0

T st + C3 (T ot − T st )

)]
.

Finally, we constrain industrial emissions to be nonnegative and we impose the resource
constraint:

αt ≤ 1,

A
1/(1−κ)
t Lt ct + (ψtα

a2
t )Y n

t ≤ Y n
t .

We take the double expectation over the feedback and temperature shock distributions
by using Gauss-Hermite quadrature, with 7 unique quadrature points for the feedback dis-
tribution and 7 unique quadrature points for the temperature shock. This results in 49 total
quadrature points covering the joint distribution. Our results are not sensitive to varying
the number of quadrature points to either 25 or 81.

We solve the model by using value function iteration with a finite horizon. We set the
horizon at 2555 and use a terminal value function where the policymaker has her initial 2005
beliefs about the uncertain parameter and all exogenously changing variables are held con-
stant at their year 2555 values. In order to match the DICE model, we use a 10-year timestep,
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Figure A-2: The optimal emission tax with standard preferences (left) and with disentan-
gled preferences (right). EIS indicates that the reciprocal of the elasticity of intertemporal
substition has been lowered to 3/2, and RRA indicates that relative risk aversion has been
raised to 3. Random variables happen to take on their mean values in every period.

but we recognize that an annual timestep could be important for a more thorough explo-
ration of learning. Figure A-2 depicts the optimal emission tax trajectory in a deterministic
version of our setting, when climate sensitivity is uncertain but the policymaker does not
learn from observations, and when the policymaker anticipates learning from observations.

Finally, we extend the theoretical analysis of Section 3 to account for the additional states
in DICE. The marginal cost of time t emissions is

−βEt
[
∂Vt+1

∂Matm
t+1

∂Matm
t+1

∂et
+
∂Vt+1

∂T st+1

∂T st+1

∂Matm
t+1

∂Matm
t+1

∂et

]
.

Passing the expectation operator through, this becomes:

− β
{
Et

[
∂Vt+1

∂T st+1

]
︸ ︷︷ ︸

A

∂T st+1

∂Matm
t+1

∂Matm
t+1

∂et
+ Et

[
∂Vt+1

∂Matm
t+1

]
︸ ︷︷ ︸

B

∂Matm
t+1

∂et

}
.

Term A is essentially as analyzed in the main text. Term B can be analyzed in a directly
analogous fashion. For the main text’s figure, we combine the channels in term A with
the corresponding channels in term B. We lose the insurance term because ∂T st+1/∂M

atm
t+1 is

not uncertain from the perspective of time t: the uncertain parameter ∆ does not interact
with forcing in the temperature transition. We also lose the active learning channel because
neither the transition equation for µt+1 nor the transition equation for Σt+1 depends on time
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Figure A-3: Optimal trajectories for the GAMS DICE-2007 model (triangles) and our dy-
namic programming version of DICE-2007 (circles) under the standard DICE parameteriza-
tion.

t emissions, once we substitute for T st+1 in Ht. The active learning channel and the insurance
channel both reappear after a longer interval lapses, so that they help to determine the
adjustment for future uncertainty.

The second-order Taylor expansions of terms A and B appear to be adequate. The
maximum relative error between the sum of our Taylor approximation terms and the actual
optimal carbon tax is 2×10−4 for the learning results in the main text. The average relative
error is 8 × 10−5. The maximum and average relative errors for the uncertainty results are
2× 10−6 and 2× 10−7.

Best Practices

Quantifying errors in solutions and providing sufficient information for replication is critical.
Here we demonstrate some best practices using the dynamic stochastic version of DICE
developed for this paper. We first demonstrate the accuracy of our model. There are
several ways to test model accuracy, but we begin by comparing optimal trajectories from
deterministic runs of our dynamic programming model to the deterministic DICE-2007 model
solved in GAMS.40 In order to make an apples to apples comparison, we change the GAMS
model to make it Markov: we rewrite the forcing equation so that current forcing is a function
of current atmospheric CO2 and not the average of current and next period’s atmospheric
CO2.41

40Cai et al. (2013) demonstrate accuracy of their dynamic programming solution by comparing determinis-
tic runs of their dynamic programming model to solutions of their model solved using more accurate optimal
control techniques.

41Replicating known results is not always a good check. Many recursive IAMs use an annual timestep,
whereas the DICE model uses a ten-year timestep. Optimal policies should vary between these settings.
Further, finding only small errors in simulated trajectories in one parameterization of the model (such as the
standard DICE parameterization) does not guarantee that simulations traveling to other areas of the state
space will be as accurate.
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Table A-2: Relative errors between GAMS solution and the dynamic programming solution
to the DICE-2007 model.

Abatement Rate Consumption Temperature CO2

Maximum Relative Error 3.9× 10−3 7.2× 10−4 3.6× 10−4 3.0× 10−4

Average Relative Error 1.1× 10−3 2.8× 10−4 2.2× 10−4 1.9× 10−4

Figure A-3 displays the optimal trajectories for the two models from 2005 to 2205, focus-
ing on the abatement rate control, the consumption control, the surface temperature state,
and the atmospheric CO2 state. In these plots, we solve the dynamic programming model
on the larger domain that we use when the climate sensitivity is uncertain, and we set µ = 3
for the Smolyak algorithm.42 Solving the problem on a tighter domain, or omitting the un-
necessary belief states for this setting, would indeed lead to greater accuracy but would not
provide a fair assessment of the accuracy of the solutions used to analyze uncertainty about
climate sensitivity.43

All plotted state and control trajectories are extremely close, and visually indistinguish-
able. Table A-2 displays the maximum and average relative errors between the GAMS and
dynamic programming trajectories. The abatement rate displays the greatest error out of all
the trajectories but is still very accurate and diverges from the GAMS solution by one-tenth
of a percent on average. The maximum and average errors for the other trajectories are
extremely small and only a few hundredths of a percent.

In addition to checking whether the model has acceptable error in optimal trajectories,
we can check for internal consistency in the model.44 In many macroeconomic models this
is done by analyzing the Euler equation residuals. Santos (2000) notes that under certain
conditions the size of the Euler residuals is the same order of magnitude as the approximation
error in the policy function. However, the DICE model does not satisfy these conditions due
to the concavity of forcing and to its use, in some cases, of a finite horizon. Instead we can
study residuals of other equations that must be satisfied along an optimal trajectory. These
do not have a direct mapping into errors in policy or welfare, but nonetheless can give us
some insight into the accuracy of our approximation. Judd et al. (2014a) and Fernández-
Villaverde et al. (2016) give some suggestions regarding residuals to test, such as Bellman
errors, first-order condition errors, or a χ2 accuracy test.

42The model solves in 15-20 minutes on a 28 core machine. µ = 3 implies 9 unique collocation points for
each dimension, although there is not 98 points on the resulting grid since it is not constructed from a full
tensor product.

43Another way to validate the model and code accuracy is to simulate our model forward using the optimal
trajectories from the Markov version of the GAMS DICE-2007 model. Doing this, we find that the state
trajectories are nearly identical.

44One should always examine the value function derivatives to ensure that they are sensible, and one should
always ensure that the solution is not particularly sensitive to the domain or degree of approximation.
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Table A-3: First-order condition errors of the learning model in log10 units.

Abatement Rate Consumption

Maximum Error -4.75 -6.70
Average Error -5.84 -7.31

Here we demonstrate testing first-order condition errors. The first-order conditions deter-
mine optimal policy, so ensuring that this error is small along simulated trajectories is critical
for getting the correct policy implications of changes in risk and uncertainty. Following the
convention for residual analysis, we calculate first-order condition errors by rearranging the
first-order conditions so that all terms are on the left-hand side of the equation and 1 is on
the other side, subtracting 1 from the left-hand side, and taking the base 10 logarithm of
the absolute value. If there were no approximation error, then taking the base 10 logarithm
would produce negative infinity, but this does not happen in practice due to errors in the
approximation of the value function and due to truncation and rounding during simulation.
Table A-3 reports the error in the first-order conditions of our learning model’s simulated
trajectory in log10 units. Numbers that are larger in magnitude imply smaller errors in the
first-order conditions. Along the optimal trajectories, the errors in the first-order conditions
are small. The average abatement error is -5.84, and all are smaller than -4.75. Consumption
errors are even smaller (-7.31) on average, and all consumption errors are less than -6.70.

Finally, we report the domain of approximation in Table A-4. The domains for both
temperature states are matched since a tighter ocean state domain will always result in the
ocean state transitioning outside the domain because next periods ocean temperature is a
convex combination of current surface and ocean temperature. We select the domain for the
two ocean CO2 states by using the transition equations to infer the tightest bounds that
would keep the next period’s ocean CO2 states within the domain.45 Results do not change
if we select a tighter domain for the ocean CO2 states and allow the continuation value to
be evaluated outside the domain during the approximation step. The lower bound for the
atmospheric CO2 state was selected so that, conditional on how we construct the domain for
the ocean CO2 states, the upper ocean CO2 state does not immediately jump outside the
domain during simulation. The variance of beliefs is naturally bounded between the initial
belief and zero. The effective capital domain is selected based on the tightest domain that
would allow for convergence of the learning model. We select the domain for the mean of
the feedback distribution to be accurate under the test against the GAMS version of DICE
and to take advantage of the fact that we only simulate the model with all random variables
fixed at their mean values. Note that, during the value function approximation steps, the
continuation value is evaluated outside the domain at a number of the quadrature points

45Due to numerical error, some grid points do transition outside the domain, but only by a very small
amount.
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Table A-4: Domain bounds for the approximation space.

kt T st T ot Matm
t Mup

t M lo
t µt Σt

Lower Bound 1.7 0 0 580 1229 18204 0.4 0
Upper Bound 6 10.6 10.6 1700 2310 47064 0.8 0.132

over next period’s feedback mean. Since our results are not sensitive to the choice of the
number of quadrature points (and thus are not sensitive to the number of mean quadrature
points that are evaluated outside or inside the domain during approximation), we take our
results to be sufficiently accurate. A wider domain will be required if a user wants to explore
simulations with noise shocks or with a true value for the feedback parameter that is different
than 0.6.
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