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Rupert Way,1,2,6,* Matthew C. Ives,1,2 Penny Mealy,1,2,3 and J. Doyne Farmer1,4,5
CONTEXT & SCALE

Decisions about how and when to

decarbonize the global energy

system are highly influenced by

estimates of the likely cost. Most

energy-economy models have

produced energy transition

scenarios that overestimate costs

due to underestimating

renewable energy cost

improvements and deployment

rates. This paper generates

probabilistic cost forecasts of

energy technologies using a

method that has been statistically

validated on data for more than 50

technologies. Using this approach

to estimate future energy system

costs under three scenarios, we

find that compared to contuinuing

with a fossil fuel-based system, a

rapid green energy transition is

likely to result in trillions of net

savings. Hence, even without

accounting for climate damages

or climate policy co-benefits,

transitioning to a net-zero energy

system by 2050 is likely to be

economically beneficial. Updating

models and expectations about

transition costs could dramatically

accelerate the decarbonization of

global energy systems.
SUMMARY

Rapidly decarbonizing the global energy system is critical for address-
ing climate change, but concerns about costs have been a barrier to im-
plementation.Most energy-economymodels havehistorically underes-
timated deployment rates for renewable energy technologies and
overestimated their costs. These issues have driven calls for alternative
approaches and more reliable technology forecasting methods. Here,
we use an approach based on probabilistic cost forecasting methods
that have been statistically validated by backtesting on more than 50
technologies.Wegenerateprobabilistic cost forecasts for solarenergy,
wind energy, batteries, and electrolyzers, conditional on deployment.
We use these methods to estimate future energy system costs and
explore how technology cost uncertainty propagates through to sys-
tem costs in three different scenarios. Compared to continuing with a
fossil fuel-basedsystem,a rapidgreenenergy transitionwill likely result
inoverall net savingsofmany trillionsofdollars—evenwithout account-
ing for climate damages or co-benefits of climate policy.

INTRODUCTION

Future energy system costs will be determined by a combination of technologies

that produce, store, and distribute energy. Their costs and deployment will change

with time due to innovation, competition, public policy, concerns about climate

change, and other factors. To provide some perspective on the likely future energy

system, Figure 1 shows how the energy landscape has evolved over the last

140 years. Figure 1A shows the historical costs of the principal energy technologies,

and Figure 1B gives their deployment; both of which are on a logarithmic scale. As

we approach the present in Figure 1A, the diagram becomes more congested,

making it clear that we are in a period of unprecedented energy diversity, with

many technologies with global average costs around $100/MWh competing for

dominance.

The long-term trends provide a clue as to how this competition may be resolved: The

prices of fossil fuels such as coal, oil, and gas are volatile, but after adjusting for infla-

tion, prices now are very similar to what they were 140 years ago, and there is no

obvious long-range trend. In contrast, for several decades the costs of solar photo-

voltaics (PV), wind, and batteries have dropped (roughly) exponentially at a rate near

10% per year. The cost of solar PV has decreased by more than three orders of

magnitude since its first commercial use in 1958.1

Figure 1B shows how the use of technologies in the global energy landscape has

evolved since 1880, when coal passed traditional biomass. It documents the slow

exponential rise in the production of oil and natural gas over a century and the rapid

rise and plateauing of nuclear energy. But perhaps the most remarkable feature is
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Figure 1. Historical costs and production of key energy supply technologies

(A) Inflation-adjusted useful energy costs (or prices for oil, coal, and gas) as a function of time. We show useful energy because it takes conversion

efficiency into account (see Document S1 section ‘‘End-use conversion efficiencies’’). Electricity generation technology costs are levelized costs of

electricity (LCOEs). Battery series show capital cost per cycle and energy stored per year, assuming daily cycling for 10 years (these are not directly

comparable with other data series here). Modeled costs of power-to-X (P2X) fuels, such as hydrogen or ammonia, assume historical polymer electrolyte

membrane (PEM) electrolyzer costs and a 50–50 mix of solar and wind electricity.

(B) Global useful energy production. The provision of energy from solar photovoltaics has, on average, increased at 44% per year for the last 30 years,

whereas wind has increased at 23% per year. These are just a few representative time series; all data sources and methods are given in Document S1

section ‘‘Data sources for Figure 1.’’
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the dramatic exponential rise in the deployment of solar PV, wind, batteries, and

electrolyzers over the last decades as they transitioned from niche applications to

mass markets. Their rate of increase is similar to that of nuclear energy in the

1970s, but unlike nuclear energy, they have all consistently experienced exponen-

tially decreasing costs. The combination of exponentially decreasing costs and rapid

exponentially increasing deployment is different from anything observed in any

other energy technologies in the past, and positions these key green technologies

to challenge the dominance of fossil fuels within a decade.

How likely is it that clean energy technology costs will continue to drop at similar

rates in the future? Under what conditions will this happen, and what does this imply

for the overall cost of the green energy transition? Is there a path forward that can

get us to net-zero emissions cheaply and quickly? We address these questions

here by applying empirically tested, state-of-the-art cost forecasting methods to en-

ergy technologies.

Historically, most energy-economy models have underestimated deployment rates

for renewable energy technologies and overestimated their costs2–7, which has led

to calls for alternative approaches and more reliable technology forecasting
2058 Joule 6, 2057–2082, September 21, 2022
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methods 8–15. Recent efforts have made progress in this direction16–19, but they are

largely deterministic in nature. The methods we use are probabilistic, allowing us to

view energy pathways through the lens of placing bets on technologies. After all,

powering modern economies requires betting on some technologies one way or

another, be they clean technologies or more fossil fuels—the best we can do is

make good bets. Which technologies should we bet on, and how likely are they to

pay off? We focus on solar, wind, batteries, and electrolyzers, which we call here

‘‘key green technologies’’, because they could play crucial roles in decarbonization

and have strong progress trends that are well documented in publicly available data-

sets. We also consider the major incumbent energy technologies and compare our

forecasts with projections made by influential energy-economy models. We investi-

gate three different energy transition scenarios and discuss the implications for

whole system costs and transition pathways.

Figure 1 provides a glimpse into the diverse nature of technological change as

technologies rise and fall from dominance.20–22 It reflects how innovation and tech-

nological learning produce different outcomes for different technologies. The di-

versity of rates of technological improvement for energy technologies seen in Fig-

ure 1 is typical of technologies in general.23–25 Roughly speaking, technologies can

be divided into two groups based on their rates of improvement. For the first

group, comprising the vast majority of technologies, inflation-adjusted costs

have remained roughly constant through time. Fossil fuels provide a good

example: although there has been enormous progress in technologies for discov-

ery and extraction, as easily accessible resources are depleted, it becomes neces-

sary to extract less accessible resources, creating a ‘‘running-to-stand-still’’ dy-

namic in which prices have remained roughly constant for more than a century

(this is true for all minerals26,27). Another example of a non-improving technology

is carbon capture and storage (CCS); despite significant effort, over its 50-year

commercial history for enhanced oil recovery, costs have not declined at all.28,29

There are even cases, such as nuclear power, where costs have increased. By

contrast, for a select group of improving technologies, costs have dropped

roughly exponentially while deployment has increased exponentially.23–25 Rates

of improvement for technologies such as optical fibers and transistors are as

high as 40%–50% per year. Solar PV, wind, and batteries have behaved similarly

but with improvement rates closer to 10% (see Document S1 section ‘‘The hetero-

geneity and persistence of technological change’’). This makes unit costs for these

technologies predictable, even if the specific technological innovations that lead

to lower costs are not predictable.

Because the behavior of these two groups of technologies is so different, they

require different cost forecastingmodels. Fossil fuels such as oil and gas are tradable

commodities, and according to efficient markets theory, their prices should follow a

random walk.30 This provides a useful approximation for roughly a decade, but over

longer spans of time they display mean reversion.31,32 This makes autoregressive

models a natural choice, and we use them to forecast oil, coal, and gas prices

(see Experimental procedures and Document S1 sections ‘‘AR(1) process,’’ ‘‘Oil,’’

‘‘Coal,’’ and ‘‘Gas’’).

For the select group of technologies that are improving, improvement rates are

remarkably consistent.33 For these technologies there are two dominant methods

for quantitatively forecasting costs based on historical data. The first is a generalized

form of Moore’s law, which says that costs drop exponentially as a function of time

(i.e., at a fixed percentage per year).23,24,34 The second is Wright’s law, which
Joule 6, 2057–2082, September 21, 2022 2059
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predicts that costs drop as a power law of cumulative production.35 This relationship

is also called an experience curve or learning curve, and cumulative production is

also called experience. (For a discussion of challenges and caveats concerning

Wright’s law, see Document S1 section ‘‘Wright’s law caveats.’’) Multifactor models

have been proposed using additional input variables, such as patenting activity

and research and development (R&D) expenditures, but data are limited and

they require additional parameters. This can lead to overfitting, resulting in poor

out-of-sample forecasts25 (see Document S1 section ‘‘Bias-variance trade-off’’).

Multifactor models have so far not been properly tested, and we do not use them

here.

Successful technologies tend to follow an ‘‘S-curve’’ for deployment, starting with a

long phase of exponential growth in production that eventually tapers off due to

market saturation.22 Under Wright’s law, during the exponential growth phase costs

drop exponentially in time, as they do for Moore’s law, but when production growth

eventually slows, cost improvement also slows. Improving technologies often spend

many decades in the exponential growth phase, making it hard to distinguish be-

tween Moore’s law and Wright’s law. Forecasts using the two models have similar

accuracy in backtesting experiments.25

This brings up the important question of responsiveness to investment. Under

Moore’s law, costs are assumed to change exogenously over time, independent

of policy and investment. Under Wright’s law, costs depend on experience.

Although experience does not directly cause costs to drop, it is correlated with

other factors that do, such as level of effort and R&D, and has the essential

advantage of being relatively easy to measure.36,37 For comparison, the historical

time series displayed in Figure 1 are plotted as experience curves in Figure S17.

The same heterogeneity of improvement rates seen in Figure 1 is evident for

Wright’s law—the fact that fossil fuel prices have not dropped historically means

that experience had no net effect—in stark contrast to key green technologies.

In this paper, we focus on Wright’s law because it satisfies the basic intuition that

exerting greater effort induces greater effects. (We repeated all our modeling

experiments using Moore’s law and found that the qualitative conclusions are

similar; see Document S1 section ‘‘Moore’s law results.’’ For a more thorough

discussion of causality, see Document S1 section ‘‘Discussion on questions of

causality.’’)

Wright’s law has usually been used to generate point forecasts, meaning that the

forecast is a deterministic function of experience, with no estimate of the error of

the forecast. Early attempts at introducing error bars did not provide a priori func-

tional forms, which made the data requirements for out-of-sample testing prohibi-

tive.25,38 More recently, a priori error estimates were derived that predict forecasting

accuracy as a function of historical improvement rates and volatility, and the number

of data points available for forecasting.33,39 Based on comprehensive backtesting,

this method was shown to generate reliable probabilistic estimates of future costs.

This was done by selecting reference dates in the past and then, using only the

data available at the time, making forecasts over all time horizons up to 20 years

into the future with respect to each reference date. Using historical data for 50

different technologies, based on roughly 6,000 forecasts, the empirically observed

forecast accuracy closely matched the a priori derived estimates on all time horizons

up to 20 years ahead.33,39 Our main contribution in this paper is to systematically

apply this method—which we call the stochastic experience curve or stochastic

Wright’s law—to the energy transition.
2060 Joule 6, 2057–2082, September 21, 2022
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Figure 2. Historical performance of the stochastic experience curve forecasting method

(A–D) The four panels show stochastic Wright’s law applied to observed data for (A) solar, (B) wind, (C) batteries, and (D) P2X electrolyzers. Forecasts are

made at regular intervals, using prior cost and deployment data to calibrate the model and ‘‘future’’ deployment data to generate the forecasts.

Forecast medians and 95% confidence intervals (CIs) are shown, and colors denote forecast year, from earliest (dark blue) to most recent (red). Costs are

LCOEs for solar and wind, and capacity costs for batteries and electrolyzers. P2X electrolyzers are assumed to be PEM electrolyzers here.

See Document S1 section ‘‘Data, calibration and technology forecasts’’ for further details and data sources.
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RESULTS

To test the accuracy of the stochastic experience curve method for forecasting costs

of energy technologies, we applied it to historical data for solar, wind, batteries, and

polymer electrolyte membrane (PEM) electrolyzers; the results are shown in Figure 2.

Data prior to each forecast year were used to estimate parameters, then observed

deployment data in subsequent years were used to generate forecasts conditioned

on experience. The forecasts for solar, wind, and batteries are reasonable: most of

the future values lie within the 95% confidence interval (CI), consistent with the a pri-

ori error estimates. As expected, forecast uncertainty decreases for later forecasts

with more historical data. Due to the short dataset and high historical volatility, fore-

casts for electrolyzers are not as accurate, but the confidence intervals capture this.
Joule 6, 2057–2082, September 21, 2022 2061
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Figure 3. Historical PV cost projections and floor costs

(A) The black dots show the observed global average levelized cost of electricity (LCOE) over time. Red lines are LCOE projections reported by the

International Energy Agency (IEA);81 dark blue lines are integrated assessment model (IAM) LCOE projections reported in 2014;41 and light blue lines

are IAM projections reported in 2018.42,43 IAM projections are rooted in 2010 despite being produced in later years. The projections shown are

exclusively ‘‘high technological progress’’ cost trajectories drawn from the most aggressive mitigation scenarios, corresponding to the largest

projected cost reductions used in these models. Other projections made were even more pessimistic about future PV costs. The inset compares a

histogram of projected compound annual reduction rates of PV system investment costs from 2010 to 2020 with what actually occurred (based on all

2,905 scenarios for which the data are available41).

(B) PV system floor costs implemented in a wide range of IAMs. The colors denote the year the floor cost was reported, ranging from 1997 (dark green) to

2020 (light green). Observed PV system costs are also shown. The cost of PV modules scaled by a constant factor of 2.5 is provided as a reference.

For further details and data sources, see Figures 8 and 9A and Document S1 section ‘‘Solar PV electricity.’’
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It is instructive to compare the accuracy of the forecasts in Figure 2 to the outputs

of influential global energy-economy models that are used to inform the Intergov-

ernmental Panel on Climate Change (IPCC) and guide global climate policy.40 Inte-

grated assessment models (IAMs) are used to evaluate policies and generate sce-

narios for deployment and cost that are consistent with given climate targets

under the assumption of optimal decision-making by economic agents. Their out-

puts are typically called ‘‘projections’’ to indicate that they are not intended to be

used as forecasts. Figure 3 emphasizes this point. Figure 3A shows past projections

of solar PV energy costs by the International Energy Agency’s (IEA) World Energy

Model and several IAMs and compares them with the observed data.

The projections shown correspond to scenarios with the most aggressive climate

policies and highest rates of technological innovation, i.e., those that produce the

highest rates of key green technology deployment and the most optimistic cost de-

clines. Nonetheless, their projected costs have been consistently much higher than

historical trends. The inset of Figure 3A gives a histogram of all 2,905 projections of

the annual rate at which solar PV system investment costs would fall between 2010

and 2020, as reported by nine separate IAM teams in the AMPERE modeling com-

parison project.41 The mean value of these projected cost reductions was 2.6%,
2062 Joule 6, 2057–2082, September 21, 2022
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and all were less than 6%. In stark contrast, during this period, solar PV costs actually

fell by 15% per year.

This makes it clear that it would have been a bad idea to treat these projections as

conditional forecasts. By contrast, the stochastic experience curve method produces

reliable conditional forecasts of known accuracy (and a published forecast of 2020

solar costs, made in 2010 using the deterministic version of Wright’s law, was indeed

far more accurate than any of the IAM or IEA projections made at the time44). One of

our goals in this paper is to illustrate how such forecasts are useful for planning the

energy transition. (Note that IAM and IEA projections are better for mature incum-

bent technologies such as fossil fuels, but their projections for solar PV, wind, batte-

ries, and electrolyzers have systematically underestimated deployment and overes-

timated costs.).2,5,45

Wright’s law is widely used to generate technology cost projections in IAMs.46–48

However, it is typically used in conjunction with ad hoc constraints such as deploy-

ment rate limits and floor costs, i.e., fixed levels that costs are assumed to never

fall below. Because IAMs use costs to determine deployment (and vice versa), and

many allow perfect foresight, constraints are necessary to prevent sharp cost de-

clines due to Wright’s law from leading to solutions in which key green technologies

are deployed faster than is physically or socially plausible. It is difficult to know what

constraints are realistic, which leads to ad hoc choices that strongly influence the

results.

The historical record indicates that the constraints on key green technology deploy-

ment and costs used in IAMs have so far been much too stringent. For example, as

shown in Figure 3B, past floor costs used in IAMs have already repeatedly been

violated. We know of no empirical evidence supporting floor costs and do not

impose them (see Document S1 section ‘‘The use of floor costs in endogenous tech-

nological learning models’’). Similarly, while there are likely limits to how quickly we

can deploy key green technologies, it is difficult to know what they are. The outputs

of IAMs depend critically on these constraints, which always alter the projections in

the same direction, making them more pessimistic about the costs and deployment

of key green technologies. As demonstrated here, the exponential growth of key

green technologies and the relative accuracy of the unconstrained version of

Wright’s law suggest that thus far these constraints have not been binding. The

imposition of excessively strong constraints is likely an important reason why the

projections of these models have not corresponded to the historical record.

Probabilistic cost forecasts for individual technologies

We applied the methods discussed so far to make forecasts of future energy costs

and prices. Given the reasons discussed in the introduction, for solar, wind, batte-

ries, and electrolyzers, we used the stochastic form of Wright’s law; and for oil,

coal, and gas, we used an autoregressive model of order 1 (AR(1)). To generate

experience curve forecasts, parameters for each technology were estimated from

historical data. We then specified scenarios for the future deployment of each tech-

nology as a function of time and predicted a distribution of future costs.

We defined three representative deployment scenarios that we will explain in more

detail later. The first scenario is consistent with the energy system transitioning away

from fossil fuels by around 2050, and so we label this deployment scenario the ‘‘Fast

Transition’’. The second scenario is consistent with eliminating fossil fuels by around

2070, so we label it the ‘‘Slow Transition’’. The final scenario is consistent with fossil
Joule 6, 2057–2082, September 21, 2022 2063
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Figure 4. Technology deployment of key green technologies

Observed data up to 2020 are shown, plus three hypothetical growth scenarios up to 2050, corresponding to Fast Transition (blue), Slow Transition

(yellow), and No Transition (gray). The trend line shown is the line through the first and last data points plotted and is indicative of the long-run trend so

far.
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fuels continuing to dominate the energy system, so we label it the ‘‘No Transition’’.

Figure 4 shows these three deployment scenarios for each of the four key green tech-

nologies in the context of their historical long-term growth trends. The deployment

trajectories for these scenarios are consistent with the S-shaped curve widely

observed in technology diffusion—the differences between them reflect differences

in the timing and abruptness with which the growth of each technology tapers off.22

Figure 5 shows probabilistic forecasts for seven particularly important energy tech-

nologies. The main panels of Figures 5A–5D show forecasts for key green technolo-

gies in the Fast Transition scenario, which are made using the stochastic version of

Wright’s law. The insets show costs versus experience and emphasize that median

costs develop identically as a function of experience in all scenarios. The side panels

of Figures 5A–5D illustrate that under Wright’s law, forecast distributions depend on

the scenario; as a result, in a faster transition, we are likely to reach lower costs

sooner. Each Wright’s law technology initially follows its current trend of exponen-

tially decreasing costs, but then progress slows as its rate of deployment drops.

To generate fossil fuel cost forecasts, the AR(1) model was calibrated to observed

data. For fossil fuels, model parameters depend on past data, but forecasts are in-

dependent of deployment, so each technology has a single forecast in all scenarios.

Figure 5 also shows a selection of future cost projections reported by IAM and IEA

studies. As before, we show only their most optimistic projections, i.e., low cost pro-

jections that correspond to high technological progress scenarios. Consistent with

the historical behavior of these models illustrated in Figure 3, the cost projections

are high relative to historical trends. They are also all substantially higher than our

forecast medians.

Of course, the deployment corresponding to these cost projections is not the same as

that used to make our forecasts, so they are not perfectly comparable. However, as the

boxplot panels show, the disparities persist across all our scenarios, including the No

Transition scenario. Thismakes it clear that our cost forecasts are, all things equal, signif-

icantly lower than those used in these highly influential energy-economy models.

The stochastic version of Wright’s law we use here captures the historical volatility of

technological progress and the associated parameter estimation error, and it
2064 Joule 6, 2057–2082, September 21, 2022
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Figure 5. Technology cost forecasts

(A–D) The main panels show cost forecast distributions under the Fast Transition scenario for solar PV, wind, batteries, and PEM electrolyzers; the 50%

confidence interval (CI) is dark blue, and the 95% CI is light blue. Also shown are several representative recent and past projections corresponding to

ll
OPEN ACCESS

Joule 6, 2057–2082, September 21, 2022 2065

Article



Figure 5. Continued

‘‘optimistic’’ mitigation scenarios made by IAMs and the IEA (red lines) (see Figure 9). For batteries, both lithium-ion (Li-ion) consumer cells and Li-ion

electric vehicle (EV) battery packs are shown, although their costs have now converged; our forecasts are based on consumer cells, whereas the IEA

projections shown are based on EV batteries. The boxplots in the right-hand panels compare cost forecasts in 2050 under the No Transition, Slow

Transition, and Fast Transition scenarios. The insets show historical experience curves and forecasts, with learning rates that are independent of the

scenario, and vertical lines that indicate how far each technology moves down the probabilistic experience curve in each scenario.

(E–G) These panels show probabilistic cost forecasts for oil, coal, and gas based on the AR(1) time-series model (see Document S1section ‘‘Data,

calibration and technology forecasts’’ for details of data sources and model calibration).
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projects this uncertainty forward in future cost distributions. It thus provides cost

ranges that are supported by empirical evidence, as opposed to the ad hoc ranges

that are often used to design energy scenarios and pathways.49 Similarly, the AR(1)

model captures the historical volatility of fossil fuel prices and projects this forward in

forecast distributions. Although it might appear that the range of possible outcomes

in Figure 5 is larger for solar, wind, and batteries than for fossil fuels, they are actually

smaller in absolute terms. The 95% confidence interval for solar costs in 2050 in the

Fast Transition scenario, for example, ranges from roughly $2 to $40 perMWh, which

is a factor of 20 and an absolute range of $38. By contrast, the price of oil in 2050

ranges from $20 to $110 per barrel, which is a factor of 5.5 but an absolute range

of $90. The uncertainty ranges we forecast for fossil fuels are in line with IEA

estimates.81 Note that the uncertainties for electrolyzers are much higher than for

the other three key green technologies because the historical series is short and

volatile.
From single technologies to a full system model

To forecast the likely costs of the green energy transition and explore how uncer-

tainty in individual technology costs propagates through to uncertainty in system

costs, we constructed a simple, transparent model of the global energy system

based on well-defined technology deployment scenarios. We added seven more

technologies to the seven technologies already presented: coal-fired and gas-fired

electricity, nuclear power, hydroelectric power, biopower, redox flow batteries, and

electricity networks. While the real-world energy system includes many other tech-

nologies, we used this limited ensemble because (1) it covers most of the current

final and useful energy of the system (around 90%), (2) it includes sufficiently many

diverse technologies for representing a wide range of energy transition pathways,

and (3) it maintains a level of simplicity suitable for conveying our main results on

future technology costs and their uncertainties.

Since our study is not intended to be comprehensive, but rather to focus on cost de-

clines for key green technologies, we do not consider liquid biofuels, geothermal

power, marine energy, traditional biomass, co-generation of heat, solar thermal en-

ergy, or CCS (our results are nevertheless robust to these modeling choices; see

Experimental procedures).

Our approach to scenario construction differs from that currently used in most stan-

dard energy-economy models, where deployment in one period is used to project

costs in the next, and vice versa. By iterating between costs and deployment in

this way, small errors can quickly get amplified, leading to scenarios that are incon-

sistent with empirically observed trends. Instead, we followed earlier energy system

models50 and constructed scenarios exogenously by specifying howmuch energy or

storage will be provided by each technology as a function of time, just as we did

for single technology deployment trajectories earlier (Document S1 section ‘‘Sce-

nario construction’’). We classify energy services into four categories—transport,

industry, buildings, and energy sector self-use (Document S1 section ‘‘Model
2066 Joule 6, 2057–2082, September 21, 2022
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components’’)—and assume that end-use sector demand grows at an overall rate of

2% per year (we vary this assumption in Document S1 section ‘‘Sensitivity to system

growth rate’’). We impose the constraint that all scenarios must reliably provide iden-

tical levels of energy services throughout the economy. This straightforward scenario

construction method allowed us to match long-standing technology growth trends.

This is in contrast to scenarios generated by IAMs, which typically do not match his-

torical deployment trends for fast-progressing technologies and often fail to match

wider transition dynamics too.51

The three scenarios that we introduced earlier—Fast Transition, Slow Transition, and

No Transition—are shown in more detail in Figure 6. They run from 2021 to 2070 and

were chosen to represent three distinctly different energy system pathways. In the

Fast Transition scenario (Figures 6A, 6D, and 6G), solar, wind, and batteries continue

to grow at rates that are somewhat slower than their long-term growth rates, as indi-

cated in Figure 4, for approximately a decade. Electrolyzers are at an earlier stage of

their S-curve; they behave similarly but stick to their current exponential growth rate

for two decades. Following trajectories similar to standard S-curves, once these

technologies become dominant, deployment slows to grow at 2% per year. Short-

term storage and electrification of most transport are achieved with batteries,

whereas long-duration energy storage (LDES) and all hard-to-electrify applications

are served by power-to-X (P2X) fuels, i.e., by using electricity for hydrogen electrol-

ysis and either directly using hydrogen or using it to make other fuels such as

ammonia and methane as needed.52 This corresponds to an ‘‘electrify almost every-

thing’’ scenario, with full sector coupling.53 Under this scenario, as shown in Fig-

ure 6D, emissions quickly get close to zero. If non-energy sources of carbon emis-

sions such as agriculture and land-use change are brought under control, it would

likely meet the 1.5� Paris Agreement target (Document S1 section ‘‘Emission reduc-

tions and reduced climate risks’’).

In the Slow Transition scenario (Figures 6B, 6E, and 6H), by contrast, current rapid

deployment trends for key green technologies slow down immediately, so that fossil

fuels are phased out more slowly and continue to dominate until mid-century.

Finally, in the No Transition scenario (Figures 6C, 6F, and 6I), the energy system re-

mains similar to its current form for several decades, as low-carbon energy sources

grow only very slowly. This is similar to the reference or ‘‘no policy’’ scenario used

by many IAMs. To provide some context for these three scenarios, they are

compared with scenarios from the IPCC’s Sixth Assessment Report (AR6) in Docu-

ment S1 section ‘‘Comparison with AR6 scenarios.’’ Full scenario details are shown

in Document S1 section ‘‘Scenarios.’’

To understand these scenarios, it is important to distinguish final energy, which is the

energy delivered for use in sectors of the economy, from useful energy, which is the

portion of final energy used to provide energy services, such as heat, light, and ki-

netic energy (Document S1 section ‘‘Energy system description’’). Fossil fuels tend

to have large end-use conversion losses in comparison to electricity, which means

that significantly more final energy is required to obtain a given amount of useful en-

ergy. Switching to energy carriers with higher conversion efficiencies (e.g., moving

to electric vehicles [EVs]) significantly reduces final energy consumption.13,54 In

the Fast Transition scenario, eventually almost all energy services originate with

electricity generated by solar PV and wind, which is used either directly, via batteries,

or by making P2X fuels for later consumption. As shown by comparing Figures 6G

and 6I, the Fast Transition qualitatively increases the role of electricity in the energy

system.
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Figure 6. Scenarios

(A–I) The three columns represent the three energy system scenarios. The three rows are: (A–C) annual useful energy provided by each technology as a

function of time; (D–F) annual final energy provided by each technology as a function of time; and (G–I) annual electricity generation and storage in grid-

scale batteries and EV batteries. Total electricity generation is divided between final electricity delivered to the economy and electricity used to

produce P2X fuels for hard-to-electrify applications and for power grid backup.
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Our model captures approximately 90% of current final energy (excluding energy

carriers that are already renewable, such as bioenergy and biofuels, plus petrochem-

ical feedstock, which is not an energy carrier; see Table S2). Of course though, useful

energy is what matters. The model also covers around 90% of current useful energy,

but this is more difficult to estimate. Under the Fast Transition and Slow Transition

scenarios, this fraction increases with time due to increased electrification. (See

Document S1 section ‘‘Model description’’ for further details).

To estimate full system costs, we need cost forecasts for all technologies. Although

coal-fired electricity and gas-fired electricity showed significant cost declines for
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some of the 20th century (as power generation components underwent technolog-

ical learning; see Figure 1), in the long run their costs are increasingly dominated by

fuel costs,55 so we used the AR(1) model for these (Document S1 sections ‘‘Coal elec-

tricity’’ and ‘‘Gas electricity’’). We used stochastic Wright’s law for nuclear power, hy-

dropower, and biopower, although these all have flat or rising costs, so the choice of

cost model is immaterial here, and they have only limited significance for energy

transition in this analysis. We also used stochastic Wright’s law for flow batteries,

but for electricity networks, since we did not have historical cost data characterizing

them in enough detail, we pessimistically assumed that unit costs will remain the

same as they are now, bearing in mind that costs are heterogeneous (Document

S1 section ‘‘Electricity networks’’).

How much will each scenario cost?

There aremany different approaches to modeling energy system pathway costs.56,57

We used the ‘‘direct engineering costs’’ approach, in which the overall cost of a

scenario is computed by adding up the costs of the component technologies (Docu-

ment S1 section ‘‘Estimating total system costs’’). We summed the costs of direct-use

oil, coal, and gas; electricity generated by seven different technologies; utility-scale

grid batteries and electrolyzers; and additional infrastructure for expansion of the

electricity grid. For electricity generation costs, we used the levelized cost of elec-

tricity (LCOE) metric. This is particularly advantageous here because then the expe-

rience curve formulation inherently captures historical progress trends in all LCOE

components, including capital costs, capacity factors, and interest rates, which

would otherwise be difficult to forecast separately (Document S1 section ‘‘Units

and justification for the use of LCOE’’). We estimated infrastructure costs that are

not directly covered by technologies included in the model, for example, for fuel

storage and distribution (Document S1 section ‘‘Fuels infrastructure’’), and for

fueling or charging light duty vehicles (Document S1 section ‘‘Electrification of trans-

port’’), and argue that they are roughly the same across scenarios.

To apply our probabilistic technology cost forecasting methods in a given scenario,

we employed a Monte Carlo approach, simulating many different future cost trajec-

tories, then exponentially discounting future costs to calculate the expected net pre-

sent cost (NPC) of the scenario up to 2070 (Document S1 sections ‘‘Net present cost

of transition’’ and ‘‘Main case results’’). Figure 7A shows annual system costs through

time for each scenario. The black boxplots represent the full cost forecast distribu-

tions, whereas the colored bars show median expenditures by technology group.

This shows how, in the Fast Transition scenario, expenditures transfer rapidly from

fossil fuels to key green technologies.

Figure 7B shows the annual system cost forecast distributions in 2050. Rapid replace-

mentof fossil fuel technologiesby low-cost keygreen technologies—inpowerand trans-

port in particular—causes the expected annual energy system cost in 2050 for the Fast

Transition scenario to be $514 billion cheaper than that for the No Transition scenario,

although the distribution of possible costs for the Fast Transition is wider. After 2050,

as shown in Figure 7A, while the median and interquartile range (IQR) remain relatively

low, the uncertainty of the Fast Transition in relation to No Transition increases. If costs

are in theupperendof theuncertainty range, cheaperalternativeswouldbeused;weare

not taking this into account, which is a drawback of our method.

Figure 7C shows the forecast distribution of the NPC of each scenario at a fixed dis-

count rate of 2%. Although there is considerable uncertainty, the NPC of the Fast

Transition is likely to be quite a bit lower than that of the No Transition. By contrast,
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Figure 7. Scenario costs

(A) Colored bars show median annual expenditures on fossil fuel and non-fossil fuel technologies in each scenario in trillions of dollars (tn USD).

Boxplots show the median and interquartile range (IQR) of total annual expenditures, and whiskers extend from the box by 1.5 times the IQR.

(B) Forecast distributions of the annual system cost in 2050 for each scenario.

(C) Forecast distributions of the net present cost (NPC) of each scenario, for a fixed discount rate of 2%.

(D) Expected net present cost of each scenario relative to the No Transition scenario, as a function of the discount rate. The inset shows the probability

that the NPCs of the Fast Transition and Slow Transition will be lower than that of the No Transition, as a function of the discount rate.
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the Slow Transition is not as cheap as the Fast Transition. This is because the current

high spending on fossil fuels continues for decades, and the savings from key green

technologies are only realized much later. Nonetheless, it also generates savings

relative to the No Transition scenario. Similarly to Figure 7B, the NPC distribution

of the Fast Transition is wider than that of the No Transition. Although this is caused

by higher technology uncertainty, it is important to note that this increased uncer-

tainty is compensated for by the leftward shift in the distribution, due to expected

cost declines associated with scaling up key green technologies.
2070 Joule 6, 2057–2082, September 21, 2022



ll
OPEN ACCESSArticle
Figure 7D shows how the expected NPC of each scenario varies with the discount

rate relative to the No Transition scenario. The inset shows that there is roughly an

80% chance that the NPC of the Fast Transition is lower than that of the No Transi-

tion, regardless of discount rate. Previous analyses have suggested that whether or

not it makes good economic sense to quickly transition to clean energy technologies

depends on the discount rate.58,59 But here we show a striking result: the Fast Tran-

sition is likely to be much cheaper at all reasonable discount rates. Using the 1.4%

social discount rate recommended in the Stern Review,60 for example, the expected

net present saving is roughly $12 trillion. At the higher discount rate of 5%, the ex-

pected saving is around $5 trillion. Note that there is some evidence that technolog-

ical progress does not slow when technologies reach their saturation phase.61 If this

is true, then costs continue to drop at their current pace, according to Moore’s law,

and the Fast Transition saves even more relative to the other scenarios (see Docu-

ment S1 section ‘‘Moore’s law results’’).

We constructed an additional scenario in which nuclear plays a dominant role in re-

placing fossil fuels, but this is much more expensive than the other scenarios. For

example, using a 1.4% discount rate, the expected NPC is about $25 trillion more

than for the No Transition (Document S1 sections ‘‘Slow nuclear transition’’ and

‘‘Main case results’’).

To enhance the credibility of our estimates, we have used consistently conservative as-

sumptions regarding the costs, performance, andoperational requirements of clean en-

ergy technologies, and we have done the opposite for fossil fuels. Our requirement that

we ground forecasts on historical data means that in many cases we were forced to

neglect promising solutions, such as demand-side management of power grids, heat

pumps, and end-use efficiency, where there are insufficient data.13 As a result, the esti-

mated savings presented here should be viewed as lower bounds on the savings likely

to be achieved in reality, as many other innovative technologies and solutions are likely

to be developed (Document S1 section ‘‘Estimating total system costs’’).

Our analysis is based on (weighted) global average costs, but there is wide

geographic variation in energy costs. Within countries, solar and wind tend to be de-

ployed first in regions where their costs are favorable, but that is not the case globally

(Document S1 section ‘‘Regional differences in competing technologies’’). In any

case, under the Fast Transition, regional cost differences are quickly overcome

through time. In the historical record of solar PV, for example, it takes less than a

decade for costs to fall from the 95th to the 5th percentile of the geographical cost

distribution at any fixed point in time. Because costs are summed here, global aver-

ages are sufficient to estimate total system costs, and we expect that future efforts

will take advantage of geographic variation to achieve even cheaper solutions.

Although the Fast Transition happens quickly, it is still possible to replace the energy

system without excessive stranding of capital. Lifetimes of large energy infrastruc-

ture projects typically range from 25 to 50 years, meaning that on average about

2%–4% of capacity needs replacing in any given year. In addition, useful energy de-

mand grows at 2% per year in all our scenarios. These two factors make it possible for

key green technologies to replace most of the existing energy system in 20 years,

and replace the remaining 5% within a few decades more, without necessarily

stranding assets before their economic lifetimes. Past estimates that suggest the

emissions from existing, planned, and proposed electricity generation infrastructure

will exceed the Paris carbon budget assumed that current utilisation rates of such as-

sets will remain constant in future, despite an increasingly competitive market, and
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that all planned and proposed deployments will go ahead, which has become

increasingly unlikely over the last decade (Document S1 section ‘‘Stranded assets’’).
DISCUSSION

To avoid confusion, we want to be clear about what we have done and what we have

not done. In contrast to most IAMs, which attempt to project both deployment and

costs conditioned on policies, we are less ambitious: we only forecast costs condi-

tioned on deployment. Although we have tried to choose deployment scenarios

that we think are reasonable, we do not attempt to forecast deployment. Our moti-

vation for taking a less ambitious modeling approach is that this allows us to stay

close to the empirical data. For improving technologies, we base all our forecasting

on methods that have been carefully tested by making out-of-sample forecasts. We

do not assume future technology costs, we forecast them using a well-tested meth-

odology. If the historical data were different, the results would be different. Humility

is always required in making forecasts, but we have gone to great lengths to ground

our forecasts with empirical data, using statistical methods to assess their reliability.

Although our Fast Transition scenario is subjective, we believe it is plausible (Docu-

ment S1 section ‘‘Is the speed of the Fast Transition achievable?’’). The deployment

trajectories are in line with past trends. There appear to be no major obstacles to

bringing the necessary technologies to scale in terms of land use, sea, climate,

raw materials, manufacturing capacity, energy return on energy invested, or system

integration.62 Nonetheless, there are significant institutional challenges, and to stay

on the current growth paths for the next decade, policies that enforce portfolio stan-

dards and/or stimulate demand will likely be needed. Our key contribution here is to

show that if we can stay on these growth paths for the next decade, we will likely

realize substantial savings. The cornerstone of the Fast Transition scenario is the

timely expansion of key green technologies, because only as these are scaled up

can fossil fuels be phased out and the savings be realized. The primary policy impli-

cation of our results is that there are enormous advantages to rapid deployment of

key green technologies. Achieving this is likely to require strong international pol-

icies for building infrastructure, skills training, and making the investments required

to realize future gains.

Our approach is complementary to IAMs. It builds on historical trends directly and

thus provides a counterweight to projections by IAMs. We have demonstrated

that the constraints that are commonly used in IAMs are likely an important cause

of the mismatch of their projections with historical data. Future work could explore

how softening these constraints within IAMs changes their projections.

We want to stress that, unlike IAMs, we are not attempting to find optimal solutions.

There are very likely other scenarios that are cheaper than the Fast Transition sce-

nario, which was constructed to explore whether (with sufficiently rapid deployment)

a rapid transition can achieve net cost savings, and if so, with what probability. Given

the likely future cost of gas, it could be possible to achieve cheaper scenarios by us-

ing gas in place of P2X fuels in some locations and applications, but these of course

would not be zero-emissions systems. Similarly, while fossil fuel prices have not his-

torically trended down, competition from key green technologies may force them

down, although this is feasible only at substantially reduced production levels where

only the cheapest fossil fuel producers are competitive.63 This emphasizes the point

that, while most of the Fast Transition is aligned with market forces, policies that

discourage the use of fossil fuels will still be needed to fully decarbonize energy.
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Our forecasts are based on time-series methods. It would be preferable to be able to

make forecasts based on first principles, but unfortunately this is not possible (even

though Wright’s law can be derived from a simple model64). Certain characteristics

of technologies, such as modularity, are predicted to be associated with more rapid

technological progress;64 but despite some evidence that this is indeed true for

modularity, it only explains a small fraction of the variance.65 A fundamental limita-

tion of all model-based forecasting methods is data, as this is required for model

calibration. When historical data are too sparse or do not exist, these methods

can not be used. In such cases, expert elicitation methods may be applied,66

although this requires care, as retrospective analysis indicates that time-series

methods are more reliable.67 Future research to address the issue of sparse data

could consider hybrid approaches that combine model-based forecasts with expert

judgments, or it could investigate the extent to which technology analogs can reli-

ably be used in forecasting. Perhaps most useful though would be a better under-

standing of the role of technology aggregation in model-based forecasting; for

example, how do forecasts of global solar PV costs relate to specific subtypes of

PV and to regional costs? In any case, the time-series methods that we used here

are currently the most reliable way to make conditional forecasts of technology costs

that agree with historical data.

Although the infrastructure costs for a rapid green energy transition are substantial,

we forecast that they are likely to be more than offset by lower energy costs. The

largest infrastructure cost is for enhanced grid capacity. In 2050, for example, our

estimated electricity network annual expenditure for the Fast Transition is about

$670 billion per year, compared with $530 billion per year for the No Transition.

However, the expected total system cost in 2050 is about $5.9 trillion per year for

the Fast Transition and $6.3 trillion per year for the No Transition. Thus, although

the additional $140 billion of grid costs might seem expensive, it is significantly

less than the savings due to cheaper energy. The essential reason that the Fast Tran-

sition is cheaper than the Slow Transition is because it realizes the cost savings due to

cheaper energy sooner—faster deployment increases the probability of rapid prog-

ress in key green technologies, so that savings accrue for longer.

The likelihood of cheaper energy raises the possibility of a rebound effect. Cheaper en-

ergy may increase global energy demand so that it grows faster than the historical 2%

per year rate assumed here. We view this as a ‘‘good problem’’: while this would raise

overall costs in the Fast Transition, renewables produce clean energy, and cheaper en-

ergy is likely to improve global living standards. To address the potential cost in-

creases, weperformeda sensitivity analysis around the systemgrowth rate assumption,

by also considering long-run growth rates of 1% and 3%. The resulting energy systems

vary widely in size and therefore represent a wide range of plausible population, eco-

nomic, and technological pathways in future. We found that our results are robust to

these variations (Document S1 section ‘‘Sensitivity to system growth rate’’).

In response to our opening question, ‘‘Is there a path forward that can get us to net-

zero emissions cheaply and quickly?,’’ our answer is: ‘‘Very likely, and the savings are

probably quite large.’’ Our quantitative analysis supports other recent efforts using

up-to-date data and technology assumptions that conclude that the green energy

transition may be cheap.16–19,68–71 The 2022 IPCC AR6 estimates that the additional

cost of decarbonizing the energy system in order to have a greater than 67% chance

of keeping warming below 2�C corresponds to a GDP loss in 2050 of 1.3%–2.7%.40

Our results suggest that there is likely no cost at all—the transition is expected to be

a net economic benefit, raising future GDP.
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We have demonstrated that the models used by the IPCC have in the past consis-

tently overestimated key green technology costs. It is important that this bias is

addressed (although, as shown in Figure 9A, the PV cost projections in the AR6 data-

base have so far exhibited the same upward bias seen previously). In the context of

the probabilistic forecasts presented in this paper, the IPCC database models are

only considering costs that are extremely unlikely—in the pessimistic direction—

and are not fully exploring the space of plausible scenarios. IPCC conclusions thus

appear to be based on an over-sampling of near worst-case scenarios regarding

key green technology costs. While even technologies with strong progress trends

sometimes experience cost increases, as has occurred for solar in the mid-2000s

and the current period due to supply shortages of key production inputs, our results

account for these fluctuations. By carefully characterizing historical progress trends

and volatility, the stochastic methods used here capture both the downside risk that

progress in some key green technologies may stall, and the upside risk—the prob-

ability that via routine invention and innovation some technology costs will fall faster

than historical trends some of the time.

Our analysis indicates that even the downside outcomes of a rapid green energy

transition are not that bad, due to the dramatic cost declines seen already. When en-

ergy system pathways are viewed in terms of bets placed on portfolios of technolo-

gies,72 we find that the Fast Transition scenario has an expected payoff of around

$5–$15 trillion. Moreover, it is also a safe bet, with around an 80% probability that

it will be cheaper than continuing with a fossil fuel-based system (and 82% when

compared with a slower transition). Since the future is uncertain, all public policy

and decision-making is ultimately a question of making the smartest bets we can,

given the often precarious circumstances we face. Our results suggest that deploy-

ing technologies according to the Fast Transition scenario is a very good bet, both in

terms of lowest costs and lowest emissions.

We want to emphasize that our results indicate that a rapid green energy transition is

likely to be beneficial, even if climate change were not a problem. When climate

change is taken into account, the benefits of the Fast Transition become over-

whelming. A common simplified method for estimating economic damages due

to climate change is to apply a social cost of carbon (SCC)15,73–75 to emissions.

The range of proposed values is vast, but just as an example, at a discount rate of

5%, assuming SCC values in the range $30–300/tCO2 (rising at 3% per year58) yields

total expected Fast Transition savings, up to 2070, of $31–$255 trillion. At a lower

discount rate of 1.4%, the range of expected savings is $88–$775 trillion. Thus,

the benefits of the Fast Transition are likely much larger than the energy system

cost savings evaluated in this study.

The belief that the green energy transition will be expensive has been a major

driver of the ineffective response to climate change for the past 40 years. This

pessimism is at odds with past technological cost improvement trends and risks

locking humanity into an expensive and dangerous energy future. While argu-

ments for a rapid green transition cite benefits such as the avoidance of climate

damages, reduced air pollution, and lower energy price volatility (Document S1

section ‘‘Additional benefits from the Fast Transition’’), these benefits are often

contrasted against discussions about the associated costs of the transition. Our

analysis suggests that such trade-offs are unlikely to exist: a greener, healthier,

and safer global energy system is also likely to be cheaper. Updating expectations

to better align with historical evidence could fundamentally change the debate
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about climate policy and dramatically accelerate progress to decarbonize energy

systems around the world.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Correspondence and requests for resources should be addressed to rupert.way@

smithschool.ox.ac.uk.

Materials availability

This study did not generate any new materials.

Time-series models

We employ two time-series models for forecasting technology costs. The first is a

first-difference stochastic form of Wright’s law, developed and tested by Lafond

et al.,39 which models costs dropping as a power law of cumulative production.

Let ct be the cost and zt be the experience of a given technology at time t, and let

ut � Nð0; s2uÞ be an independent and identically distributed (IID) draw from a normal

distribution. Then future costs are predicted using the iterative relationship

log ct � log ct� 1 = � uðlog zt � log zt� 1Þ+ ut + rut� 1: (Equation 1)

This relationship has three parameters. For a given technology, the experience

exponent u characterizes the average rate at which costs drop as a function of

experience, and the noise variance s2u characterizes the variability of this relation-

ship. The autocorrelation parameter r characterizes the persistence of fluctuations

in cost improvements. To avoid overfitting, and to ensure that our forecasts

adhere strictly to the same statistical properties as those tested by Lafond et al.39

we use r = 0:19 for all technologies, which was found to be a good overall

choice for 50 different technologies. This was necessary because fitting three param-

eters to short data series such as those we have here degrades out-of-sample fore-

casting accuracy. (We also did a comparison of all our results replacing Wright’s law

by a generalized form of Moore’s law [see Document S1section ‘‘Moore’s law

results’’]).

When applying the model to technologies with falling costs, as shown in Figure 5,

two features of the model must be stressed. First, the Wright’s law model does

not simply ‘‘assume’’ that if costs fell in the past then they will fall in future—indeed,

costs are predicted to rise with a non-zero probability that depends directly on

observed data in the past. Second, despite the downward trends, all cost forecast

distributions are always strictly positive, since costs develop in log space.

For fossil fuels we use an AR(1) model:

log ct = log ct� 1 + bðm � log ct� 1Þ+ et ; with IID et � N �
0;s2

e

�
; (Equation 2)

where m = E½log ct � is the unconditional mean of the logarithm of cost, se is the vola-

tility of the noise process et , and b is the rate of mean reversion. For comprehensive

details on forecasting methods see Document S1 section ‘‘Technology cost

models.’’

Additional technology cost projections

Figures 8 and 9 show the solar and wind cost projection ensembles that underlie the

specific cost projections displayed in Figures 3 and 5.
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Figure 8. IEA PV LCOE projections

All PV LCOE projections found in the IEA’s World Energy Outlook (WEO) reports are shown in

colors varying from purple through light green (note that ‘‘projection’’ here means conditional

forecast—this is a forecast that is conditional upon a whole array of modeling assumptions

regarding the scenario within which the forecast is embedded). The first such projection was found

in the WEO 2001. The four projections we selected to plot in Figure 3 are shown in red and were

chosen as examples of ‘‘high progress’’ projections. The first two, published in the WEOs from 2001

and 2008, may be considered high progress projections, because in those reports, cost ranges were

provided, and we simply picked the lowest points of those ranges. The upper ends of the ranges

were significantly higher. The second two (beginning in 2015 and 2019) may be interpreted as ‘‘high

progress’’ projections, because they correspond to the highest mitigation scenarios available in

the WEOs from which they are sourced (WEO 2016 and 2020). Note, however, that in those reports,

only region-specific cost projections were provided, so we have plotted the simple global average

of those values in the high mitigation scenarios. Observed values are from the Performance Curve

Database (described in Nagy et al.25) up to 2010 and from Bloomberg New Energy Finance (BNEF)

thereafter.

See Document S1 section ‘‘Data, calibration, and technology forecasts’’ for more details on data

sources.
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Scenario construction

Wemodel the supply of energy services increasing at a fixed rate per year (2% in our

main specification). Energy services include heating/cooling, light, mobility, suste-

nance, materials, hygiene, and communications, but since these are hard tomeasure

and data are sparse, we take useful energy as a proxy for energy services. Energy

transition scenarios are constructed by assuming that growth rates of energy carriers

and technologies follow logistic (‘‘S’’) curves with specified start and end points

consistent with the growth of total useful energy. We model the relationship
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Figure 9. PV and wind capital cost projections reported by IAMs

Capital cost projections reported by various modeling comparison projects are shown as blue, red, yellow, and green lines for (A) PV and (B) onshore

wind. Each line corresponds to a single scenario. To construct and plot the LCOE projections in Figure 3, we selected two capacity cost projections

reported in 2014 (cyan lines) and two reported in 2018 (magenta lines). For Figure 5, we also added one PV projection reported in 2022 (dark green).

These may all be interpreted as ‘‘high progress’’ projections because they are among the lowest in their cohorts (i.e., the cyan lines are on the low end of

the suite of blue lines, the magenta lines are low relative to the red and yellow lines, and the dark green line is low relative to the green lines). Note that

these are (in eight out of nine cases) global average values, whereas some other projections are region specific. For PV, the projections plotted are as

follows: (1) model: MESSAGE, scenario: ‘‘AMPERE3-450,’’ region: World (from AMPERE41); (2) model: DNE21, scenario: ‘‘AMPERE3-450,’’ region: World

(from AMPERE41); (3) model: IMAGE 3.0, scenario: baseline, region: China (from Krey et al.42); (4) model: REMIND-MAgPIE 1.7–3.0, scenario:

SMP_1p5C_early, region: World (from SR1543); and (5) model: WITCH 5.0, scenario: EN_INDCi2030_1000, region: World (from AR640). For wind, the

projections plotted are as follows: (1) model: MESSAGE, scenario: AMPERE3-450, region: World (from AMPERE41); (2) model: DNE21, scenario:

AMPERE3-450, region: World (from AMPERE41); (3) model: AIM/CGE 2.1, scenario: TERL_15D_LowCarbonTransportPolicy, region: World (from SR1543);

and (4) model: REMIND-MAgPIE 1.7–3.0, scenario: SMP_1p5C_early, region: World (from SR1543). To calculate LCOEs, we used technology lifetimes

and discount rates reported in Krey et al.,42 and operations and maintenance (O&M) values from the original studies where possible (and if not, then

Krey et al.42 values again). We used global average capacity factors of 0.18 for PV and 0.3 for wind, based on recent data reported by IRENA83 and IEA.76

Observed data sources for PV are given in Table S21. Wind data are from IRENA.83

ll
OPEN ACCESSArticle
between final and useful energy based on average conversion efficiency factors

given by DeStercke.77 We take these conversion factors to be static and apply

them on a per-energy-carrier, per-sector basis. The model therefore does not
Joule 6, 2057–2082, September 21, 2022 2077
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include improvements in the underlying efficiency of each energy carrier at

providing energy services, but it does allow efficiency improvements on a per-sector

basis, via energy carrier substitution. For example, the conversion efficiencies of oil

and electricity in the transport sector are assumed constant, yet the efficiency of the

sector as a whole may be improved by switching from oil to electricity. The end point

of each scenario in 2070 is defined by the shares of technologies providing electricity

generation and the shares of energy carriers providing final energy. The start points

for all scenarios are identical and match the current shares in the base year, 2020.

Details of all growth rates, timings, and energy carrier mixes for each scenario are

given in Document S1 sections ‘‘Scenario construction’’ and ‘‘Scenarios.’’

Our modeling approach is based on two key design principles: (1) include only the

minimal set of variables necessary to represent most of the global energy system

and the most important cost and production dynamics, and (2) ensure all assump-

tions and dynamics are technically realistic and closely tied to empirical evidence

(Document S1 section ‘‘General approach’’). This means that we focus on energy

technologies that have been in commercial use for sufficient time to develop a reli-

able historical record for forecasting purposes. This is also an essential constraint

because deployment of technologies typically takes a long time, and only technol-

ogies that have track records are positioned to play an immediate role in confronting

climate change.22

We choose a level of model granularity well suited to the probabilistic forecasting

methods used, i.e., one that allows accurate model calibration and ensures overall

cost-reduction trends associated with cumulative production are captured for

each technology. Our model design can be run on a laptop, is easy to understand

and interpret, and allows us to calibrate all components against historical data so

that the model is firmly empirically grounded. The historical data do not exist to

do this on a more granular level.

We omitted several minor energy technologies. Co-generation of heat, traditional

biomass, marine energy, solar thermal energy, and geothermal energy were omitted

either due to insufficient historical data or because they have not exhibited signifi-

cant historical cost improvements, or both. Liquid biofuels were also excluded

because any significant expansion would have high environmental costs (Document

S1 section ‘‘Bioenergy, solar thermal energy, marine energy and geothermal en-

ergy’’). Finally, CCS in conjunction with fossil fuels was omitted because (1) it is

currently a very small, low growth sector, (2) it has exhibited no promising cost im-

provements so far in its 50-year history, and (3) the cost of fossil fuels provides a

hard lower bound on the cost of providing energy via fossil fuels with CCS (Docu-

ment S1 section ‘‘CCS’’). This means that within a few decades electricity produced

with CCS will likely not be competitive even if CCS is free. There may of course be

some role for CCS in non-energy, direct-emission applications, but this is outside

the scope of this paper.

Since renewable energy production is variable, storage is essential. In the Fast Tran-

sition scenario we have allocated so much storage capacity using batteries and P2X

fuels that the entire global energy system could run for a month without any sun or

wind (Document S1 section ‘‘Energy storage and flexibility requirements’’). This is a

sensible choice because both batteries and electrolyzers have highly favorable

trends for cost and production (Document S1 sections ‘‘Batteries’’ and ‘‘Hydrogen

and electrolyzers’’). From 1995 to 2018 the production of lithium-ion (Li-ion) batte-

ries increased at 30% per year, while costs dropped at 12% per year, giving an
2078 Joule 6, 2057–2082, September 21, 2022
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experience curve comparable to that of solar PV.78 Currently, about 60% of the cost

of electrolytic hydrogen is electricity, and hydrogen is around 80% of the cost of

ammonia,79 so these automatically take advantage of the high progress rates for so-

lar PV and wind.

We ensure system reliability constraints are met—including robustness to seasonal

demand variations—by providing sufficient levels of energy storage, firm capacity

resources, over-generation of variable renewable energy (VRE) sources, and network

expansion80 (Document S1 section ‘‘Energy storage and flexibility requirements’’).

To be specific, when VRE penetration is high, we ensure enough utility-scale battery

storage is available to store 20% of average daily electricity generation (though note

that daily generation is much higher than daily end-use consumption, because

excess generation is used to produce P2X fuels). Flow batteries are able to store a

further 10% of average daily generation. In addition, when VRE penetration is

high, transport is electrified, which as well as being a flexible demand source, could

also act as another storage source (though system reliability constraints are met here

without relying on it). Excess VRE is used to produce P2X fuels in sufficient quantities

to supply all end-use sector requirements and also to provide global power grid

backup for 1 month each year.

Data and code availability

We used data from a wide range of sources. Many of these were free and openly

available on the internet, but some were accessed via standard university-wide sub-

scription licenses held by the University of Oxford. Sources include: the IEA,81 BP,82

the International Renewable Energy Agency,83 Lazard,84 the U.S. Energy Information

Administration,85 Bloomberg New Energy Finance, Bloomberg L.P. (via Bloomberg

Terminal), and several academic papers. For more details, see Document S1 section

‘‘Data, calibration and technology forecasts.’’ All data will be made available upon

request (unless legal restrictions exist).

The code used in this analysis will be made available upon request.
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