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Abstract

Probably because of their interpretability and transparent nature, synthetic controls
have become widely applied in empirical research in economics and the social sciences.
This article aims to provide practical guidance to researchers employing synthetic
control methods. The article starts with an overview and an introduction to synthetic
control estimation. The main sections discuss the advantages of the synthetic control
framework as a research design, and describe the settings where synthetic controls
provide reliable estimates and those where they may fail. The article closes with
a discussion of recent extensions, related methods, and avenues for future research.
(JEL C21, C23)

1. Introduction

Synthetic control methods (Abadie and Gardeazabal, 2003; Abadie et al., 2010) have become

widely applied in empirical research in economics and other disciplines. Under appropriate

conditions, synthetic controls provide substantial advantages as a research design method in the

social sciences. These advantages, I believe, explain the increasing popularity of synthetic control

methods in empirical research. At the same time, the validity of synthetic control estimators

depends on important practical requirements. Perfunctory applications that ignore the context

of the empirical investigation and the characteristics of the data may miss the mark, producing
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misleading estimates.

My goal with this article is to provide guidance for empirical practice to researchers employ-

ing synthetic control methods. With this goal in mind, I put special emphasis on feasibility,

data requirements, contextual requirements, and methodological issues related to the empirical

application of synthetic controls. Particularly important is characterizing the practical settings

where synthetic controls may be useful and those where they may fail.

Section 2 briefly introduces the ideas behind the synthetic control methodology in the context

of comparative case studies. Section 3 discusses some of the formal aspects of the synthetic control

methodology that are of particular interest for empirical applications. Readers who are already

familiar with the synthetic control methodology may only need to read Sections 3.3 to 3.5 in

detail, and skim through Section 2 and the rest of Section 3 in order to acquaint themselves with

terms and notation that will be employed in later sections. Sections 4 through 6 comprise the

core of the article. Section 4 discusses the practical advantages of synthetic control estimators.

Sections 5 and 6 discuss contextual and data requirements for synthetic control empirical studies.

I discuss the validity of these requirements in applied settings and potential ways to adapt the

research design when the requirements do not hold in practice. Section 7 describes robustness

and diagnostic checks to evaluate the credibility of a synthetic control counterfactual and to

measure the extent to which results are sensitive to changes in the study design. Section 8

discusses extensions and recent proposals. The final section contains conclusions and describes

open areas for research on synthetic controls.

2. A Primer on Synthetic Control Estimators

In a recent Journal of Economic Perspectives survey on the econometrics of policy evaluation,

Susan Athey and Guido Imbens describe synthetic controls as “arguably the most important

innovation in the policy evaluation literature in the last 15 years” (Athey and Imbens, 2017).

In the last few years, synthetic controls have been applied to study the effects of right-to-carry

laws (Donohue et al., 2019), legalized prostitution (Cunningham and Shah, 2018), immigration

policy (Bohn et al., 2014), corporate political connections (Acemoglu et al., 2016), taxation

(Kleven et al., 2013), organized crime (Pinotti, 2015) and many other key policy issues. They
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have also been adopted as the main tool for data analysis across different sides of the issues in

recent prominent debates on the effects of immigration (Borjas, 2017; Peri and Yasenov, 2019)

and minimum wages (Allegretto et al., 2017; Jardim et al., 2017; Neumark and Wascher, 2017;

Reich et al., 2017). Synthetic controls are also applied outside economics: in the social sciences,

biomedical disciplines, engineering, etc. (see, e.g., Heersink et al., 2017; Pieters et al., 2017).

Outside academia, synthetic controls have found considerable coverage in the popular press (see,

e.g., Guo, 2015; Douglas, 2018) and have been widely adopted by multilateral organizations,

think tanks, business analytics units, governmental agencies, and consulting firms. For example,

the synthetic control method plays a prominent role in the official evaluation of the effects of

the massive Bill & Melinda Gates Foundation’s Intensive Partnerships for Effective Teaching

program (Gutierrez et al., 2016).

Synthetic control methods were originally proposed in Abadie and Gardeazabal (2003) and

Abadie et al. (2010) with the aim to estimate the effects of aggregate interventions, that is,

interventions that are implemented at an aggregate level affecting a small number of large units

(such as a cities, regions, or countries), on some aggregate outcome of interest. More recently,

synthetic control methods have been applied to settings with a large number of units.1 We will

discuss this and other extensions in Section 8.

Consider a setting where one aggregate unit, such as a state, or a school district, is exposed to

an event or intervention of interest. For example, Abadie et al. (2010) study the effect of a large

tobacco-control program adopted in California in 1988; Bifulco et al. (2017) evaluate the effects of

an educational program adopted in the Syracuse, NY, school district in 2008. In accordance with

the program evaluation literature in economics, the terms “treated” and “untreated” will refer to

units exposed and not exposed to the event or intervention of interest, respectively. I will use the

terms “event”, “intervention”, and “treatment” interchangeably. Traditional regression analysis

techniques require large samples and many observed instances of the event or intervention of

interest and, as a result, they are often ill-suited to estimate the effects of infrequent events,

such as policy interventions, on aggregate units. Economists have approached the estimation of

1See, e.g., Acemoglu et al. (2016), Kreif et al. (2016), Abadie and L’Hour (2019), and Dube and Zipperer
(2015).
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the effects of large scale but infrequent interventions using time-series analysis and comparative

case studies. Single-unit time-series analysis is an effective tool to study the short-term effects of

policy interventions in cases when we expect short-term effects to be of a substantial magnitude.2

However, the use of time series techniques to estimate medium and long-term effects of policy

intervention is complicated by the presence of shocks to the outcome of interest, aside from the

effect of the intervention. Comparative case studies are based on the idea that the effect of

an intervention can be inferred by comparing the evolution of the outcome variables of interest

between the unit exposed to treatment and a group of units that are similar to the exposed

unit but were not affected by the treatment. This can be achieved whenever the evolution of the

outcomes for the unit affected by the intervention and the comparison units is driven by common

factors that induce a substantial amount of co-movement.

Comparative case studies have long been applied to the evaluation of large-scale events or

aggregate interventions. For example, to estimate the effects of the massive arrival of Cuban

expatriates to Miami during the 1980 Mariel Boatlift on native unemployment in Miami, Card

(1990) compares the evolution of native unemployment in Miami at the time of the boatlift to

the average evolution of native unemployment in four other cities in the US. Similarly, Card

and Krueger (1994) use Pennsylvania as a comparison to estimate the effects of an increase

in the New Jersey minimum wage on employment in fast food restaurants in New Jersey. A

drawback of comparative case studies of this type is that the selection of the comparison units

is not formalized and often relies on informal statements of affinity between the units affected

by the event or intervention of interest and a set of comparison units. Moreover, when the units

of observation are a small number of aggregate entities, like countries or regions, no single unit

alone may provide a good comparison for the unit affected by the intervention.

The synthetic control method is based on the idea that, when the units of observation are

a small number of aggregate entities, a combination of unaffected units often provides a more

2The literature on “interrupted time-series” is particularly relevant in the context of policy evaluation. See,
for example, Cook and Campbell (1979) which discusses the limitations of this methodology if interventions are
gradual rather than abrupt and/or if the causal effect of an intervention is delayed in time. Interrupted time-series
methods are closely related to regression-discontinuity design techniques (see, e.g., Thistlethwaite and Campbell,
1960).
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appropriate comparison than any single unaffected unit alone. The synthetic control methodology

seeks to formalize the selection of the comparison units using a data driven procedure. As we

will discuss later, this formalization also opens the door to a mode of quantitative inference for

comparative case studies.

3. Formal Aspects of the Synthetic Control Method

3.1. The Setting

Suppose that we obtain data for J + 1 units: j = 1, 2, . . . , J + 1. Without loss of generality,

we assume that the first unit (j = 1) is the treated unit, that is, the unit affected by the

policy intervention of interest.3 The “donor pool”, that is, the set of potential comparisons,

j = 2, . . . , J + 1 is a collection of untreated units, not affected by the intervention. We assume

also that our data span T periods and that the first T0 periods are before the intervention. For

each unit, j, and time, t, we observe the outcome of interest, Yjt. For each unit, j, we also observe

a set of k predictors of the outcome, X1j, · · · , Xkj, which may include pre-intervention values of

Yjt and which are themselves unaffected by the intervention. The k × 1 vectors X1, . . . ,XJ+1

contain the values of the predictors for units j = 1, . . . , J + 1, respectively. The k × J matrix,

X0 = [X2 · · ·XJ+1], collects the values of the predictors for the J untreated units. For each unit,

j, and time period, t, we will define Y N
jt to be the potential response without intervention. For

the unit affected by the intervention, j = 1, and a post-intervention period, t > T0, we will define

Y I
1t to be the potential response under the intervention.4 Then, the effect of the intervention of

interest for the affected unit in period t (with t > T0) is:

τ1t = Y I
1t − Y N

1t . (1)

Because unit “one” is exposed to the intervention after period T0, it follows that for t > T0

we have Y1t = Y I
1t. Simply put, for the unit affected by the intervention and a post-intervention

3The synthetic control framework can easily accommodate estimation with multiple treated units by fitting
separate synthetic controls for each of the treated units. In practice, however, estimation with several treated
units may carry some practical complications that are discussed in Section 8.

4Y I
1t and Y N

jt are the potential outcomes of Rubin’s Model for Causal Inference (see, e.g., Rubin, 1974; Holland,

1986). To simplify notation, I exclude the start time of the intervention from the notation for Y I
1t. Notice, however,

that the value of Y I
1t depends in general not only on when the intervention starts, but also other features of the

intervention that are fixed in our analysis and, therefore, excluded from the notation.
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period we observe the potential outcome under the intervention. The great policy evaluation

challenge is to estimate Y N
1t for t > T0: how the outcome of interest would have evolved for the

affected unit in the absence of the intervention. This is a counterfactual outcome, as the affected

unit was, by definition, exposed to the intervention of interest after t = T0. As equation (1) makes

clear, given that Y I
1t is observed, the problem of estimating the effect of a policy intervention

is equivalent to the problem of estimating Y N
1t . Notice also that equation (1) allows the effect

of the intervention to change over time. This is crucial because intervention effects may not be

instantaneous and may accumulate or dissipate as time after the intervention passes.

3.2. Estimation

Comparative case studies aim to reproduce Y N
1t —that is, the value of the outcome variable that

would have been observed for the affected unit in the absence of the intervention—using one

unaffected unit or a small number of unaffected units that had similar characteristics as the

affected unit at the time of the intervention. When the data consist of a few aggregate entities,

such as regions or countries, it is often difficult to find a single unaffected unit that provides a

suitable comparison for the unit affected by the policy intervention of interest. As mentioned

above, the synthetic control method is based on the observation that a combination of units in

the donor pool may approximate the characteristics of the affected unit substantially better than

any unaffected unit alone. A synthetic control is defined as a weighted average of the units in

the donor pool. Formally, a synthetic control can be represented by a J × 1 vector of weights,

W = (w2, . . . , wJ+1)
′. Given a set of weights, W , the synthetic control estimators of Y N

1t and τ1t

are, respectively:

Ŷ N
1t =

J+1∑
j=2

wjYjt, (2)

and

τ̂1t = Y1t − Ŷ N
1t . (3)

To avoid extrapolation, the weights are restricted to be non-negative and to sum to one, so

synthetic controls are weighted averages of the units in the donor pool. The requirement that

weights should be non-negative and no greater than one can be relaxed at the cost of allowing

6



extrapolation. For example, Abadie et al. (2015) show that, in the context of estimating the

effect of a policy intervention, there is a regression estimator that can be represented as a

synthetic control with weights that are unrestricted except for that the sum of the weights

is equal to one. By not restricting the weights to be in [0, 1], regression allows extrapolation.5

Restricting synthetic control weights to be non-negative and sum to one generates synthetic

controls that are weighted averages of the outcomes of units in the donor pool, with weights that

are typically sparse (see Section 4). That is, only a small number of units in the donor pool

contribute to the estimate of the counterfactual of interest, Ŷ N
1t , and the contribution of each unit

is represented by its synthetic control weight. Because synthetic control weights define a weighted

average and because they are sparse, the specific nature of a synthetic control counterfactual

estimate is particularly transparent, relative to competing methods. Notice also that considering

synthetic controls with weights that sum to one may be warranted only if the variables in the

data are rescaled to correct for differences in size between units (e.g., per-capita income) or if

such correction is not needed because the variables in the data do not scale with size (e.g., prices).

As an example, a synthetic control that assigns equal weights, wj = 1/J , to each of the units

in the control group results in the following estimator for τ1t:

τ̂1t = Y1t −
1

J

J+1∑
j=2

Yjt. (4)

In this case, the synthetic control is the simple average of all the units in the donor pool. A

population-weighted version is

τ̂1t = Y1t −
J+1∑
j=2

wpopj Yjt, (5)

where wpopj is the population in unit j (e.g., at the time of the intervention) as a fraction of the

total population in the donor pool. If, however, a single unit, m, in the donor pool is used as a

comparison, then wm = 1, wj = 0 for j 6= m, and

τ̂1t = Y1t − Ymt. (6)

5See Section 4 for details. Doudchenko and Imbens (2016), Ferman (2019) and Li (2019) discuss the role of
weight restrictions as regularization devices. Doudchenko and Imbens (2016) and Chernozhukov et al. (2019a)
propose alternative regularization procedures for synthetic controls based on the elastic net and the lasso, respec-
tively.
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For nearest-neighbor estimators, m is the index value that minimizes ‖X1−Xj‖ over j for some

norm ‖ · ‖.

Expressing the comparison unit as a synthetic control motivates the question of how the

weights, w2, . . . , wJ+1, should be chosen in practice. Abadie and Gardeazabal (2003) and

Abadie et al. (2010) propose to choose w2, . . . , wJ+1 so that the resulting synthetic control best

resembles the pre-intervention values for the treated unit of predictors of the outcome variable.

That is, given a set of non-negative constants, v1, . . . , vk, Abadie and Gardeazabal (2003) and

Abadie et al. (2010) propose to choose the synthetic control, W ∗ = (w2
∗, . . . , wJ+1

∗)′ that

minimizes

‖X1 −X0W ‖ =

(
k∑

h=1

vh (Xh1 − w2Xh2 − · · · − wJ+1XhJ+1)
2

)1/2

(7)

subject to the restriction that w2, . . . , wJ+1 are non-negative and sum to one.6 Then, the esti-

mated treatment effect for the treated unit at time t = T0 + 1, . . . , T is

τ̂1t = Y1t −
J+1∑
j=2

w∗jYjt. (8)

The positive constants v1, . . . , vk in (7) reflect the relative importance of the synthetic control

reproducing the values of each of the k predictors for the treated unit, X11, · · · , Xk1. For a given

set of weights, v1, . . . , vk, minimizing equation (7) can be easily accomplished using constrained

quadratic optimization. That is, each potential choice of V = (v1, . . . , vk) produces a synthetic

control, W (V ) = (w2(V ), . . . , wJ+1(V ))′, which can be determined by minimizing equation

(7), subject to the restriction that the weights in W (V ) are positive and sum to one.

Of course, a question remains about how to choose V . A simple selector of vh is the inverse

of the variance of Xh1, . . . , XhJ+1, which in effect rescales all rows of [X1 : X0] to have unit

variance. Alternatively, Abadie and Gardeazabal (2003) and Abadie et al. (2010) choose V ,

such that the synthetic control W (V ) minimizes the mean squared prediction error (MSPE) of

6For the sake of expositional simplicity, I discuss only the normalized Euclidean norm in equation (7). Of
course, other norms are possible. Also, to avoid notational clutter, dependence of the norm in equation (7) from
the weights v1, . . . , vk is left implicit in the notation.
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this synthetic control with respect to Y N
1t∑

t∈T0

(
Y1t − w2(V )Y2t − · · · − wJ+1(V )YJ+1t

)2
,

for some set T0 ⊆ {1, 2, . . . , T0} of pre-intervention periods. Abadie et al. (2015) propose a

related method to choose v1, . . . , vk via out-of-sample validation. The ideas behind out-of-

sample validation selection of v1, . . . , vk are described next. The goal of the synthetic control is

to approximate the trajectory that would have been observed for Y1t and t > T0 in the absence of

the intervention. For that purpose, the synthetic control method selects a set of weights W such

that the resulting synthetic control resembles the affected unit before the intervention along the

values of the variables X11, . . . , Xk1. The question of choosing V = (v1, . . . , vk) boils down to

assessing the relative importance of each of X11, . . . , Xk1 as a predictor of Y N
1t . That is, the value

vh aims to reflect the relative importance of approximating the value of Xh1 for predicting Y N
1t in

the post-intervention period, t = T0 +1, . . . , T . Because Y N
1t is not observed for t = T0 +1, . . . , T ,

we cannot directly evaluate the relative importance of fitting each predictor to approximate

Y N
1t in the post-intervention period. However, Y N

1t is observed for the pre-intervention periods

t = 1, 2, . . . , T0, so it is possible to use pre-intervention data to assess the predictive power on

Y N
1t of the variables X1j, . . . , Xkj. This can be accomplished in the following manner.

1. Divide the pre-intervention periods into a initial training period and a subsequent validation

period. For simplicity and concreteness, we will assume that T0 is even and the training

and validation periods span t = 1, . . . , t0 and t = t0 + 1, . . . , T0, respectively, with

t0 = T0/2. In practice, the lengths of the training and validation periods may depend

on application-specific factors, such as the extent of data availability on outcomes in the

pre-intervention and post-intervention periods, and the specific times when the predictors

are measured in the data.

2. For every value V , let w̃2(V ), . . . , w̃J+1(V ) be the synthetic control weights computed with

training period data on the predictors. The mean squared prediction error of this synthetic
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control with respect to Y N
1t in the validation period is:

T0∑
t=t0+1

(
Y1t − w̃2(V )Y2t − · · · − w̃J+1(V )YJ+1t

)2
, (9)

3. Minimize the mean squared prediction error in the previous equation with respect to V .

4. Use the resulting V ∗ and data on the predictors for the last t0 periods before in the

intervention, t = T0 − t0 + 1, . . . , T0, to calculate W ∗ = W (V ∗).7

To give sharpness to the discussion of the properties and practical implementation of synthetic

control estimators, I will refer as a running example to an application in Abadie et al. (2015),

which estimates the effect of the 1990 German reunification on per-capita GDP in West Germany.

In this application, the intervention is the 1990 German reunification and the treated unit is the

former West Germany. The donor pool consists a set of industrialized countries, and X1 and

X0 collect pre-reunification values of predictors of economic growth. Figure 1(a) compares the

trajectory of per-capita GDP before and after the reunification for West Germany and a simple

average of the countries in the donor pool, for the years 1960-2003. This is the comparison in

equation (4). Average per-capita GDP among the countries in the donor pool fails to reproduce

the trajectory of per-capita GDP for West Germany even before the reunification takes place

in 1990. Moreover, the restriction of parallel trends required for difference-in-differences models

(see, e.g., Abadie, 2005; Angrist and Pischke, 2008) fails to hold in the pre-intervention data.

Figure 1(b) reports the trajectory of per-capita GDP for West Germany and for a synthetic

control calculated in the manner explained in this section. This figure shows that a weighted

average of the countries in the donor pool is able to closely approximate the trajectory of per-

capita GDP for West Germany before the German reunification.

Moreover, the synthetic control of Figure 1(b) closely reproduces the pre-reunification values

of economic growth predictors for West Germany. In columns (1) to (4), Table 1 reports the value

of economic growth predictors for West Germany, X1, for the synthetic control, X0W
∗, for the

7As discussed in Klößner et al. (2018), cross-validation weights are not always unique. That is, minimization of
equation (9) may not have a unique solution. In principle, this could be dealt with via penalization (e.g., adding

a term γ
∑k

h=1 v
2
m for some γ > 0 to equation (9), which favors dense sets of weights). In practice, however,

researchers should aim to demonstrate that their results are not overly sensitive to particular choices of V .
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Figure 1: Synthetic control estimation in the German reunification example

Panel (a) compares the evolution of per capita GDP in West Germany to the evolution of per capita GDP for
a simple average of OECD countries. In panel (b) the comparison is with a synthetic control calculated in the
manner explained in Section 3.2. See Abadie et al. (2015) for details.
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simple average of the units in the donor pool as in equation (4), and for the single comparison

estimator of equation (6), where m is the index of the nearest neighbor in terms of the values of

the predictors in X1 (see Table 1 note for details). The results in Table 1 illustrate the potential

benefit in terms of the fit of the covariates from using synthetic control methods in studies with a

few comparison units in the donor pool. While the simple average of the countries in the OECD

sample and the nearest neighbor both fail to reproduce the economic growth predictors for West

Germany prior to the reunification, a synthetic control provides a rather accurate approximation

to the value of the predictors for West Germany.

West Synthetic OECD Austria
Germany West Germany Average (Nearest

Neighbor)
(1) (2) (3) (4)

GDP per-capita 15808.9 15802.24 13669.4 14817
Trade openness 56.8 56.9 59.8 74.6
Inflation rate 2.6 3.5 7.6 3.5
Industry share 34.5 34.5 34.0 35.5
Schooling 55.5 55.2 38.7 60.9
Investment rate 27.0 27.0 25.9 26.6

Note: First column reports X1, second column reports X0W
∗, the third

column reports a simple average of Xj for the 16 OECD countries in
the donor pool, and the last column reports the value of Xj for the
nearest neighbor of West Germany in terms of predictors values. GDP
per capita, inflation rate, and trade openness are averages for 1981-1990
period. Industry share (of value added) is the average for 1981-1989.
Schooling is the average for 1980 and 1985. Investment rate is averaged
over 1980-1984. See Abadie et al. (2015) for variable definitions and
sources. The nearest neighbor in column (4) minimizes the Euclidean
norm of the pairwise differences between the values of the predictors for
West Germany and for each of the countries in the donor pool, after
rescaling the predictors to have unit variance.

Table 1: Economic growth predictor means before the German reunification

Table 2 relays the identities and contributions of each of the units in the donor pool to the

synthetic control for West Germany. Austria carries the largest weight, with the U.S., Japan,

Switzerland, and the Netherlands also contributing to the synthetic control with weights in
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Australia –
Austria 0.42
Belgium –
Denmark –
France –
Greece –
Italy –
Japan 0.16
Netherlands 0.09
New Zealand –
Norway –
Portugal –
Spain –
Switzerland 0.11
United Kingdom –
United States 0.22

Table 2: Synthetic control weights for West Germany

decreasing order. The rest of the countries in the donor pool do not contribute to the synthetic

control for West Germany. As we will see later, the sparsity of the weights in Table 2 is typical of

synthetic control estimators, and is a consequence of the geometric characteristics of the solution

to the optimization problem that generates synthetic controls.

3.3. Bias bound

Abadie et al. (2010) study the bias properties of synthetic controls estimators for the cases when

Y N
1t is generated by (i) a linear factor model, or (ii) a vector autoregressive model.8 They show

that, under some conditions, the synthetic control estimator is unbiased for a vector autoregres-

sive model, and provide a bias bound for a linear factor model. Here, I will restrict the exposition

to the linear factor model, which can be seen as a generalization of difference-in-differences. Con-

sider the following linear factor model for Y N
jt ,

Y N
jt = δt + θtZj + λtµj + εjt, (10)

8Notice that the assumptions on the data generating process involve Y N
jt , but not Y I

1t. Since Y I
1t = Y1t is

observed, estimation of τ1t for t > T0 requires no assumptions on the process that generates Y I
1t.
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where δt is a time trend, Zj and µj are vectors of observed and unobserved predictors of Y N
jt ,

respectively, with coefficients θt and λt, and εjt are zero mean individual transitory shocks. In the

time series literature in econometrics, θt and λt are referred to as common factors, and Zj and µj

as factor loadings. δt is a common factor with constant loadings across units, while λt represents

a set of common factors with varying loadings across units. A difference-in-differences/fixed

effects panel model can be obtained from equation (10) by restricting λt to be time invariant, so

λt = λ (see Bai, 2009). This has the effect of restricting the mean outcomes of units with the

same values for the observed predictors, Zj = z, to follow parallel trends, δt + θtz + λµj. A

linear factor model provides a useful extension to the difference-in-differences/fixed effects panel

data models by allowing Y N
jt to depend on multiple unobserved components, µj, with coefficients,

λt, that change in time. In contrast to difference-in-differences, the linear factor model does not

impose parallel mean outcome trends for units with the same values for Zj.

Abadie et al. (2010) provide a characterization of the bias of the synthetic control estimator

for the case when the synthetic control reproduces the characteristics of the treatment unit.

Let X1 be the vector that includes Z1 and the pre-intervention outcomes for the treated unit,

and let X0 be the matrix that collects the same variables for the untreated units. Suppose

that X1 = X0W
∗, that is, the synthetic control represented by W ∗ is able to reproduce the

characteristics of the treated unit (including the values of the pre-intevention outcomes). Then

the bias of τ̂it is controlled by the ratio between the scale of the individual transitory shocks,

εit and the number of pre-intervention periods, T0. The intuition behind this result is rather

immediate. Under the factor model in equation (10), a synthetic control that reproduces the

values Z1 and µ1 would provide an unbiased estimator of the treatment effect for the treated.

If X1 = X0W
∗, then the synthetic control matches the value of Z1. On the other hand, µ1 is

not observed, so it cannot be matched directly in the data. However, a synthetic control that

reproduces the values of Z1 but fails to reproduce the values of µ1 can only provide a close

match for the pre-treatment outcomes if differences in the values of the individual transitory

shocks between the treated and the synthetic control compensate for the differences in unobserved

factor loadings. This is unlikely to happen when the scale of the transitory shocks, εit, is small or
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the number of pre-treatment periods, T0, is large. In contrast, a small number of pre-intervention

periods combined with enough variation in the unobserved transitory shocks may result in a close

match for pre-treatment outcomes even if the synthetic control does not closely match the values

of µ1. This is a form of over-fitting and a potential source of bias.

In practice, the conditionX1 = X0W
∗ is replaced by the approximate versionX1 ≈X0W

∗.

It is important to notice, however, that for any particular data-set there are not ex-ante guar-

antees on the size of the difference X1 −X0W
∗. When this difference is large, Abadie et al.

(2010) recommend against the use of synthetic controls because of the potential for substantial

biases. For the factor model in equation (10), obtaining a good fit X1 ≈ X0W
∗ when X1 and

X0 include pre-intervention outcomes typically requires that the variance of the transitory shock

is small (see Ferman and Pinto, 2018). Moreover, because the bias bound depends inversely on

T0, one could erroneously conclude that under the factor model in equation (10), the synthetic

control estimator is unbiased as T0 goes to infinity. However, the bias bound in Abadie et al.

(2010) is derived under X1 = X0W
∗, and its practical relevance depends on the ability of the

synthetic control to reproduce the trajectory of the outcome for the treated unit. Sizeable biases

may persist as T0 →∞, unless the quality of the fit, X1 −X0W
∗, is good. That is, the ability

of a synthetic control to reproduce the trajectory of the outcome variable for the treated unit

over an extended period of time, as in Figure 1(b), provides an indication of low bias. However,

a large T0 cannot drive down the bias if the fit is bad. In practice, synthetic controls may not

perfectly fit the characteristics of the treated units. Section 7 discusses a backdating exercise

that can often be used to obtain an indication of the size and direction of the bias arising from

imperfect fit.

The risk of overfitting may also increase with the size of the donor pool, especially when T0

is small. For any fixed T0, a larger J makes it easier to fit pre-treatment outcomes even when

there are substantial discrepancies in factor loadings between the treated unit and the synthetic

control. Consistent with this argument, the bias bound for τ̂1t derived in Abadie et al. (2010)

depends positively on J . Under a factor model for Y N
it , a large number of units in the donor

pool may create or exacerbate the bias of the synthetic control estimator, especially if the values
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of µj in the donor pool greatly differ from µ1.
9 Moreover, the factor model in equation (10)

should be interpreted only as an approximation to a more general (non-linear) process for Y N
it .

If the process that determines Y N
it is non-linear in the attributes of the units, even a close fit by

a synthetic control, which is a weighted average, could potentially result in large interpolation

biases.

A practical implication of the discussion in the previous paragraph is that each of the units

in the donor pool have to be chosen judiciously to provide a reasonable control for the treated

unit. Including in the donor pool units that are regarded by the analyst to be unsuitable controls

because of large discrepancies in the values of their observed attributesZj or because of suspected

large differences in the values of the unobserved attributes µj relative to the treated unit is a

recipe for bias.

There are other factors that contribute to the bias bound in Abadie et al. (2010). In particular,

the value of the bound increases with the number on unobserved factors, that is, the number

of components in µj. The dependence of the bias bound on the number of unobserved factors

is relevant for the discussion on the choice of predictors for the synthetic control method in the

next section.

3.4. Variable selection

A synthetic control provides a predictor of Y N
1t for t > T0, the potential outcome without the

intervention for the treated units in a post-intervention period. Like for any other prediction

procedure, the choice of predictors (in X1 and X0 for synthetic control estimators) is a fun-

damental part of the estimation task. This section discusses variable selection in the synthetic

control method. To aid the discussion of the different issues involved in variable selection for

synthetic controls, I will employ the concepts and notation of the linear factor model framework

of Section 3.3. Predictor variables in X1 and X0 typically include both pre-intervention values

of the outcome variable as well as other predictors, Zj.

Pre-intervention values of the outcome variable, which are naturally available in panel data

9A large J may be beneficial in high-dimensional settings, as demonstrated in Ferman (2019), who shows that
under certain conditions synthetic control estimators may asymptotically unbiased as T0 →∞ and J →∞.
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settings, play a crucial role in reproducing the unobserved factor loadings in µj in the linear

factor model of Section 3.3. They also arise organically as predictors for the synthetic control

estimators under a vector auto-regression model for the process that generates the data (see

Abadie et al., 2010). The credibility of a synthetic control estimator depends on its ability to

track the trajectory of the outcome variable for the treated unit for an extended pre-intervention

period. Provided that a good fit for pre-intervention outcomes is attained, the researcher has

some flexibility in the way pre-intervention outcomes are incorporated in X1 and X0. Consider

the German reunification application of Section 3.2. As reported in Table 1, the set of predictors

in X1 and X0 includes average per-capita GDP in 1981-1990, and no other pre-intervention

outcome. Notice, however, that the resulting synthetic control is able to track the trajectory

of per-capita GDP for West Germany for the entire 1960-1990 pre-intervention period. This

happens because per-capita GDP figures for OECD countries strongly co-move in time across

countries. This co-movement of the outcome variable of interest across the different units in the

data is exactly what synthetic controls are designed to exploit. It makes it possible to match

the entire trajectory of GDP per-capita for West Germany by fitting only the average level of

GDP per capita in the 1981-1990 period. Given this premise, one potential advantage from using

a summary measure of pre-reunification GDP per capita to calculate the synthetic control for

West Germany (as opposed to, say, including all ten different annual values of GDP per capita

for the 1981-1990 as predictors) resides in a higher sparsity of the resulting synthetic control. As

will be discussed in Section 4 below, the number of units in the donor pool that carry positive

weights in a synthetic control estimator is controlled by the number of predictors in X1 and X0,

and sparse synthetic controls (that is, synthetic controls made of a small number of comparison

units) are easy to interpret and evaluate.

Part of the literature on synthetic controls emphasizes estimators that depend only on pre-

intervention outcomes and ignore the information of other predictors, Zj. This reliance on pre-

intervention outcomes only, while adopted in many cases for technical or expositional convenience,

may create the mistaken impression that other predictors play a minor role in synthetic control

estimators. Notice, however, that in equation (10), covariates excluded from Zj are mechanically
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absorbed into µj, which increases the number of components of µj and, therefore, the bound on

the bias, as discussed in the previous section. By excluding Zj from the set of predictors in X1

and X0, not only do we aim to implicitly match the values of µj through their effects on the

pre-intervention outcomes, but also the values of Zj.

Data driven methods for variable selection evaluate the predictive power of alternative sets

of predictors. This can be done in the synthetic control method framework by considering

alternative sets of variables for the procedure discussed in Section 3.2 to choose v1, . . . , vk. The

procedure divides the pre-intervention periods into an initial training period and a subsequent

validation period. Synthetic control weights are computed using data from the training period

only. The validation period can then be used to evaluate the predictive power of the resulting

synthetic control. This procedure can be used to select predictors or to evaluate the predictive

power of a given set of predictors as in Section 7 below. Section 7 below discusses how to assess

the robustness of the results to alternative sets of predictors.

Finally, it is worth noting that post-intervention outcomes are not used in the calculation

of synthetic control weights. This property of synthetic control methods can be exploited to

provide guarantees against the use of results to guide specification searches. This is because

synthetic control weights can be calculated using pre-intervention data only in the design phase

of the study, before post-intervention outcomes are observed or realized. Section 4 discusses this

issue in more detail.

3.5. Inference

Abadie et al. (2010) propose a mode of inference for the synthetic control framework that is

based on permutation methods. In its simpler version, the effect on the intervention is estimated

separately for each of the units in the sample. Consider the case with a single treated unit,

as in Section 3.1. A permutation distribution can be obtained by iteratively reassigning the

treatment to the units in the donor pool and estimating “placebo effects” in each iteration.

Then, the permutation distribution is constructed by pooling the effect estimated for the treated

unit together with placebo effects estimated for the units in the donor pool. The effect of the

treatment on the unit affected by the intervention is deemed to be significant when its magnitude
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is extreme relative to the permutation distribution.

One potential complication with this procedure is that, even if a synthetic control is able

to closely fit the trajectory of the outcome variable for the treated unit before the intervention,

the same may not be true for all the units in the donor pool. For this reason, Abadie et al.

(2010) propose a test statistic that measures the ratio of the post-intervention fit relative to the

pre-intervention fit. For 0 ≤ t1 ≤ t2 ≤ T and j = {1, . . . , J + 1}, let

Rj(t1, t2) =

(
1

t2 − t1 + 1

t2∑
t=t1

(Yjt − Ŷ N
jt )2

)1/2

, (11)

where Ŷ N
jt is the outcome on period t produced by a synthetic control when unit j is coded as

treated and using all other J units to construct the donor pool. This is the root mean squared

prediction error (RMSPE) of the synthetic control estimator for unit j and time periods t1, . . . , t2.

The ratio between the post-intervention RMSPE and pre-intervention RMSPE for unit j is

rj =
Rj(T0 + 1, T )

Rj(1, T0)
. (12)

That is, rj measures the quality of the fit of a synthetic control for unit j in the post-treatment

period, relative to the quality of the fit in the pre-treatment period. Abadie et al. (2010) use

the permutation distribution of rj for inference. An alternative solution to the problem of poor

pre-treatment fit in the donor pool is to base inference on the distribution Rj(T0 + 1, T ) after

discarding those placebo runs with Rj(1, T0) substantially larger than R1(1, T0) (see Abadie et al.,

2010).

A p-value for the inferential procedure based on the permutation distribution of rj, as de-

scribed above, is given by

p =
1

J + 1

J+1∑
j=1

I+(r1 − rj),

where I+() is an indicator function which returns one for non-negative arguments and zero

otherwise. While p-values are often used to summarize the results of testing procedures, the

permutation distribution of the test statistics, rj, or of the placebo gaps, Yjt − Ŷ N
jt , are easy to

report/visualize and provide additional information (e.g., on the magnitude of the differences

between the estimated treatment effect on the treated unit and the placebo gaps in the donor
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pool). P -values have also been used to construct confidence intervals for estimated treatment

effects by inverting inverting a test statistic (see, e.g., Firpo and Possebom, 2018).

Replacing Yjt − Ŷ N
jt in R(T0 + 1, T ) with their positive or negative parts, (Yjt − Ŷ N

jt )+ or

(Yjt− Ŷ N
jt )−, leads to one-sided inference. One-sided inference may result in a substantial of gain

of power.10 This is an important consideration in many comparative case study settings, where

samples are considerably small. Alternative test statistics (see, e.g., Firpo and Possebom, 2018)

could potentially be used to direct power to specific sets of alternatives.

As discussed in Abadie et al. (2010) this mode of inference reduces to classical randomiza-

tion inference (Fisher, 1935) when the intervention is randomly assigned, a rather improbable

setting, especially in contexts with aggregate units. More generally, this mode of inference eval-

uates significance relative to a benchmark distribution for the assignment process, one that is

implemented directly in the data. Abadie et al. (2010) use a uniform benchmark, but one could

easily depart from the uniform case. Firpo and Possebom (2018) propose a sensitivity analysis

procedure that considers deviations from the uniform benchmark.

Because in most observational settings assignment to the intervention is not randomized,

one could, in principle, adopt permutation schemes that incorporate information in the data

on the assignment probabilities for the different units in the sample (as in, e.g., Rosenbaum,

1984). However, in many comparative case studies it is difficult to articulate the nature of a

plausible assignment mechanism or even the specific nature of a placebo intervention. Consider,

for example, the 1990 German reunification application in Abadie et al. (2015). In that context, it

would be difficult to articulate the nature of the assignment mechanism or even describe placebo

interventions (France would reunify with whom?) Moreover, even if a plausible assignment

mechanism exists, estimation of the assignment mechanism is often hopeless, because many

comparative case studies feature a single or a small number of treated units.

It is important to note that the availability of a well-defined procedure to select the comparison

unit, like the one provided by the synthetic control method, makes the estimation of the effects of

10Notice that, in the presence of a treatment effect on the treated unit, permutations in which the treated unit
contributes to the placebo synthetic control will tend to produce effects of the opposite sign to the effect on the
treated unit, increasing the power of the one sided test.
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placebo interventions feasible. Without a formal description of the procedure used to choose the

comparison for the treated unit, it would be difficult to re-apply the same estimation procedure

to the units in the donor pool. In this sense, the formalization of the choice of the comparison

unit provided by the synthetic control method opens the door to a mode of quantitative inference

in the context of comparative case studies.

Another important point to notice is that the permutation method described in this section

does not attempt to approximate the sampling distributions of test statistics. Sampling-based

statistical tests employ restrictions on the sampling mechanism (data generating process) to

derive a distribution of a test statistic in a thought experiment where alternative samples could

have been obtained from the sampling mechanism that generated the data. In a comparative

case study framework, however, sampling-based inference is complicated—sometimes because of

the absence of a well-defined sampling mechanism or data generating process, and sometimes

because the sample is the same as the population. For example, in their study of the effect

of terrorism on economic outcomes in Spain, Abadie and Gardeazabal (2003) employ a sample

consisting of all Spanish regions. Here, sampling is not done at random from a well-defined

superpopulation. As in classical randomization tests (Fisher, 1935), design-based inference takes

care of these complications by conditioning on the sample and considering only the variation in

the test statistic that is induced by the assignment mechanism (see, e.g., Abadie et al., 2020).11

4. Why use synthetic controls?

In this section, I will describe some advantages of synthetic control estimators relative to al-

ternative methods. For the sake of concreteness and because linear regression is arguably the

most widely applied tool in empirical research in economics, I emphasize the differences between

synthetic control estimators and linear regression estimators. However, much of the discussion

applies more generally to other estimators of treatment effects.

A linear regression estimator of the effect of the treatment can easily be constructed using

the panel data structure described in Section 3.1. Let Y 0 be the (T − T0) × J matrix of post-

11In particular, this is in contrast to the bias bound calculations in Abadie et al. (2010), which are performed
over the distribution of the individual transitory shocks, εit.
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intervention outcomes for the units in the donor pool with (t, j)-element equal to Yj+1,T0+t. Let

X1 andX0 be the result of augmentingX1 andX0, respectively, with a row of ones. A regression-

based estimator of the counterfactual Y N
1t for t > T0 is B̂

′
X1, where B̂ = (X0X

′
0)
−1X0 Y

′
0. That

is, the regression-based estimator is akin to a synthetic control, as it uses a linear combination,

Y 0W
reg, of the outcomes in the donor pool, with W reg = X

′
0(X0X

′
0)
−1X1, to reproduce the

outcome of the treated unit in the absence of the intervention. Some advantages of synthetic

controls relative to regression-based counterfactual are listed next.

No extrapolation. Synthetic control estimators preclude extrapolation, because synthetic control

weights are non-negative and sum to one. It is easy to check that, like their synthetic control

counterparts, the regression weights in W reg sum to one. Unlike the synthetic control weights,

however, regression weights may be outside the [0, 1] interval, allowing extrapolation outside of

the support of the data (see Abadie et al., 2015, for details).12 Table 3 reports regression weights

for the German reunification example. In this application, the regression counterfactual utilizes

negative values for four countries.

Transparency of the fit. Linear regression uses extrapolation to guarantee a perfect fit of the

characteristics of the treated unit, X0W
reg = X1 (and, therefore, X0W

reg = X1) even when

the untreated units are completely dissimilar in their characteristics to the treated unit. In

contrast, synthetic controls make transparent the actual discrepancy between the treated unit

and the convex combination of untreated units that provides the counterfactual of interest,

X1 −X0W
∗. This discrepancy is equal to the difference between columns (1) and (2) in Table

1. In addition, Figure 1(b) brings to light the fit of a synthetic control in terms of pre-intervention

outcomes. That is, the information in Table 1 and Figure 1 makes clear the extent to which

the observations in the donor pool can approximate the characteristics of the treated units by

interpolation only. In some applications, comparisons like that of columns (1) and (2) of Table 1

may reveal that it is not possible to approximate the characteristics of the treated unit(s) using

a weighted average of the units in the donor pool. In that case, Abadie et al. (2010, 2015) advise

against using synthetic controls.

12See King and Zeng (2006) on the dangers of relying on extrapolation to estimate counterfactuals.
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Safeguard against specification searches. In contrast to regression but similar to classical matching

methods, synthetic controls do not require access to post-treatment outcomes in the design phase

of the study, when synthetic controls are calculated. This implies that all the data analysis on

design decisions like the identity of the units in the donor pool or the predictors in X1 and X0

can be made without knowing how they affect the conclusions of the study (see Rubin, 2007,

for a related discussion regarding matching estimators). Moreover, synthetic control weights can

be calculated and pre-registered/publicized before the post-treatment outcomes are realized, or

before the actual intervention takes place. That is, pre-registration of synthetic control weights

can play a role similar to pre-analysis plans in randomized control trials (see, e.g., Olken, 2015),

providing a safeguard against specification searches and p-hacking.

Transparency of the counterfactual. Synthetic controls make explicit the contribution of each

comparison unit to the counterfactual of interest. Moreover, because the synthetic control co-

efficients are proper weights and are sparse (more on sparsity below), they allow a simple and

precise interpretation of the nature of the estimate of the counterfactual of interest. For the

application to the effects of the German reunification in Table 2, the counterfactual for West

Germany is given by a weighted average of Austria (0.42), Japan (0.16), the Netherlands (0.09),

Switzerland (0.11) and the US (0.22) with weights in parentheses. Simplicity and transparency

of the counterfactual allows the use of the expert knowledge to evaluate the validity of a syn-

thetic control and the directions of potential biases. For instance, smaller neighboring countries

of West Germany, such as Austria, Netherlands and Switzerland, have a substantial weight on

the composition of the synthetic control of Table 2. If economic growth in these countries was

negatively affected by the German reunification during the 1990-2003 period (perhaps because

West Germany diverted demand and investment from these countries to East Germany) this

would imply that Figure 1(b) estimates a lower bound on the magnitude (absolute value) of the

negative effect of the German reunification on per capita GDP in West Germany.

Sparsity. As evidenced in the results of Tables 2 and 3 synthetic controls are sparse, but regression

weights are not. As discussed above, sparsity plays an important role for the interpretation and

evaluation of the estimated counterfactual. The sparsity of synthetic control weights has an

23



immediate geometric interpretation. Assume, for now, that X1 falls outside the convex hull

of the columns of X0. This is typical in empirical practice and a consequence of the curse of

dimensionality. Assume also that the columns of X0 are in general position (that is, there is no

set of m columns, with 2 ≤ m ≤ k+ 1, that fall into an (m− 2)-dimensional hyperplane). Then,

the synthetic control is unique and sparse—with the number of non-zero weights bounded by

k—as it is the projection of X1 on the convex hull of the columns of X0. Figure 2 provides a

visual representation of the geometric interpretation of the sparsity property of synthetic control

estimators. Only the control observations marked in red contribute to the synthetic control.

Notice that Table 1 indicates that the synthetic control for West Germany falls close to but

outside the convex hull of the values of economic growth predictors in the donor pool (otherwise,

columns (1) and (2) would be identical). As a result, the number of non-zero weights in Table

2 is not larger than the number of variables in Table 1. If desired, sparsity can be increased

by imposing a bound on the density (number of non-zero weights) of W ∗ in the calculation of

synthetic controls (see Abadie et al., 2015).

In some cases, especially in applications with many treated units, the values of the predictors

for some of the treated units may fall in the convex hull of the columns of X0. Then, synthetic

controls are not necessarily unique or sparse. That is, a minimizer of equation (7) may not be

unique or sparse, although sparse solutions with no more than k + 1 non-zero weights always

exist. A question is then how to choose among the typically infinite number of solutions to the

minimization of equation (7). A modification of the synthetic control estimator in Abadie and

L’Hour (2019) discussed in Section 8 addresses this problem and produces synthetic controls that

are unique and sparse (provided that untreated observations are in general quadratic position,

see Abadie and L’Hour, 2019, for details). In contrast, as shown in Table 3, regression estimators

are typically not sparse.

It is important to notice that the role of sparsity in the context of synthetic control methods

differs from the usual role that sparsity plays in other statistical methods like the lasso, where a

sparsity-inducing regularization is employed to prevent overfitting, and where the interpretation

of the lasso coefficients is often not at issue. Like for the lasso, the goal of synthetic controls
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Australia 0.12
Austria 0.26
Belgium 0.00
Denmark 0.08
France 0.04
Greece -0.09
Italy -0.05
Japan 0.19
Netherlands 0.14
New Zealand 0.12
Norway 0.04
Portugal -0.08
Spain -0.01
Switzerland 0.05
United Kingdom 0.06
United States 0.13

Table 3: Regression weights for West Germany

is out-of-sample prediction; in particular, prediction of Y N
1t for t > T0. In contrast to the lasso,

however, the identity and magnitude of non-zero coefficients constitute important information

to interpret the nature of the estimate, and evaluate its validity and the potential for biases.

One of the greatest appeals of the synthetic control method resides, in my opinion, in the

interpretability of the estimated counterfactuals, which results from the weighted average nature

of synthetic control estimators and from the sparsity of the weights.

Despite the practical advantages of synthetic control methods, successful application of syn-

thetic control estimators crucially depends on important contextual and data requirements, which

are discussed in the next two sections.

5. Contextual Requirements

This section will discuss contextual requirements, that is, the conditions on the context of the

investigation under which synthetic controls are appropriate tools for policy evaluation, as well as

suitable ways to modify the analysis when these conditions do not perfectly hold. It is important,
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Synthetic Control Method: Sparsity

X 0W
∗

X 1

Figure 2: Projecting X1 on the convex hull of X0

however, to point out that most of the requirements listed in this section pertain not only to

synthetic control methods but also to any other type of comparative case study research design.

Size of the effect and volatility of the outcome. As previously discussed, the goal of comparative

case studies is to estimate the effect of a policy intervention on the unit (e.g., state or region)

exposed to an intervention of interest. That is, comparative case studies typically estimate the

effect of an intervention on a single treated unit or on a small number of treated units. The

nature of this exercise, which focuses on a single treated unit or on a small number of treated

units, indicates that small effects will be indistinguishable from other shocks to the outcome of

the affected unit, especially if the outcome variable of interest is highly volatile.13 As a result,

the impact of “small” interventions with effects of a magnitude similar to the volatility of the

outcome are difficult to detect. Even a large effect may be difficult to detect if the volatility of

the outcome is also large. Outcome variables that include substantial random noise elevate the

risk of overfitting, as explained in Section 3.3. In cases where substantial volatility is present in

13In studies that seek to estimate the average effect of an intervention that is observed in a large number of
instances, the volatility of the outcome variable can often be reduced by averaging. In contrast, as explained
above, comparative case studies in many cases focus on the effect of a single event or intervention.
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the outcome of interest it is advisable to remove it via filtering in both the exposed unit as well

as in the units in the donor pool before applying synthetic control techniques.14 Notice, however,

that the challenge posed by volatility comes only from the fraction of it that is generated by unit-

specific factors (e.g., the individual-specific transitory shocks, εjt, in equation (10)). Volatility

generated by common factors affecting other units (e.g., the common factors λt in equation (10))

can be differentiated-out by choosing an appropriate synthetic control.

Availability of a comparison group. The very nature of comparative case studies implies that

inference based on these methods will be faulty in the absence of a suitable comparison group.

First and foremost, in order to have units available for the donor pool, it is important that

not all units adopt interventions similar to the one under investigation during the period of the

study. Units that adopt an intervention similar to the one adopted by the unit of interest should

not be included in the donor pool because they are affected by the intervention, very much like

the unit of interest. It is also important to eliminate from the donor pool any units that may

have suffered large idiosyncratic shocks to the outcome of interest during the study period, if

it is judged that such shocks would not have affected the outcome of the unit of interest in the

absence of the intervention.15 Moreover, it is important to restrict the donor pool to units with

characteristics that are similar to the affected unit. The reason is that, while the restrictions

placed on the weights, W , do not allow extrapolation, interpolation biases may still be important

if the synthetic control matches the characteristics of the affected unit by averaging away large

discrepancies between the characteristics of the affected unit and the characteristics of the units

in the synthetic control. For the German reunification example, Abadie et al. (2015) restrict

the donor pool to a set of OECD economies. Related to this point, Abadie and L’Hour (2019)

propose adding to the objective function in equation (7) a set of penalty terms that depend on

the discrepancies between the characteristics of the affected unit and the characteristics of the

individual units included in the synthetic control (see Section 8 for details).

14For example, Amjad et al. (2018) propose singular value thresholding to de-noise data for synthetic controls.
15As an example, in their study of the effect of California’s tobacco control legislation, Abadie et al. (2010)

discard from the donor pool several states that adopted large-scale tobacco programs or substantially increased
taxes on tobacco during the sample period of the study.
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No anticipation. As in any research design that exploits time variation in the outcome variable

to estimate the effect of an intervention, synthetic control estimators may be biased if forward

looking economic agents react in advance of the policy intervention under investigation, or if

certain components of the intervention are put in place in advance of the formal implementa-

tion/enactment of the intervention. If there are signs of anticipation, it is advisable to backdate

the intervention in the data set to a period before any anticipation effect can be expected, so

the full extent of the effect of the intervention can be estimated. Notice that backdating the

intervention in the data does not mechanically bias the estimator of the effect of the intervention

even if some periods before the intervention are mistakenly recorded as post-intervention periods.

The reason is that, as shown in equations (2) and (3), the synthetic control estimator does not

restrict the time variation in the effect of the intervention. Therefore, periods barely affected by

the intervention may show small or zero effects, while subsequent periods may produce a large

estimated effect. This is in contrast with much of the practice using panel data models, where in

many instances the effect of an intervention is restricted to be constant across post-intervention

periods.

No interference. In the setup of Section 3.1, we defined the potential outcomes Y I
1t and Y N

it only in

terms of the treatment status for unit 1 and unit i, respectively, at time t. This is the stable unit

treatment value assumption in Rubin (1980), which implies that there is no interference across

units. That is, units’ outcomes are invariant to other units’ treatments. In some instances,

however, an intervention may have spillover effects on units that are not directly targeted by

it. Assuming that such spillover effects do not exist is a strong restriction that must often be

enforced in the design of the study or accounted for in the analysis of the results.

The assumption of no interference can be enforced in the design of a study by discarding from

the donor pool those units with outcomes possibly affected by the intervention on the treated

unit. Notice that there is a potential tension between this practice and the issues discussed in

Availability of a Comparison Group. On the one hand, it is advisable to select for the donor pool

units that are affected by the same regional economic shocks as the unit where the intervention

happens. On the other hand, if spillover effects are substantial and affect units in close geograph-
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ical proximity, those units may provide a biased estimate of the counterfactual outcome without

intervention for the unit affected by the intervention. In cases when units potentially affected

by spillover effects are discarded from the donor pool, the transparency of the fit of synthetic

controls allows researchers to evaluate the reduction in the quality of the match between the

characteristics of the treated unit and the characteristics of the synthetic control.

Potential spillover effects can also be accounted for in the analysis phase of a synthetic control

study. If units affected by spillover effects are included in the synthetic control, the researcher

should be aware of the potential direction of the bias of the resulting estimator. For example,

Abadie et al. (2015) estimate the economic impact of the 1990 German reunification using a

synthetic control of other OECD countries to approximate the trajectory of the counterfactual

per capita GDP for West Germany in the absence of the unification. As explained above, if

countries that compose the synthetic control for West Germany, like Austria, suffered from

the negative effects of the German reunification, then we would expect the synthetic control

estimator to be attenuated. That is, in this case, the synthetic control estimate would provide

a lower bound on the magnitude of the causal effect of the German reunification on GDP per

capita in West Germany. Notice that it is the transparency of the counterfactual and sparsity

of the synthetic control counterfactual estimate that makes this exercise possible. In regression

settings, like the one in Section 4, the weight of each unit in the counterfactual estimate is

rarely computed in empirical practice, and non-sparse weight vectors often including negative

components complicate the evaluation of potential biases.

Convex hull condition. Synthetic control estimates are predicated on the idea that a combination

of unaffected units can approximate the pre-intervention characteristics of the affected unit. Once

the synthetic control is constructed it should be checked that the differences in the characteristics

of the affected unit and the synthetic control are small, that is:

X11 − w2X12 − · · · − wJX1J+1 ≈ 0, · · · , Xk1 − w2Xk2 − · · · − wJXkJ+1 ≈ 0.

In mathematical parlance, we need that (X11, X21, . . . , Xk1) falls close to the convex hull of the

set of points {(X12, X22, . . . , Xk2), . . . , (X1J+1, X2J+1, . . . , XkJ+1)}. If the unit affected by the
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intervention of interest is “extreme” in the value of a particular variable, such a value may not

be closely approximated by a synthetic control.16

The fact that the value of a particular predictor for the treated cannot be closely approximated by

the synthetic control may be less of a concern if the synthetic control closely tracks the trajectory

of the outcome variable for the unit affected by the intervention during a hold-out validation

period. In some cases, however, the unit affected by the intervention of interest may be extreme

in the values of the outcome variable before the intervention and, as a result, there will not be a

weighted average of untreated units that can approximate the trajectory of the outcome variable

for the treated unit before the intervention. A potential way to proceed in those cases is to

transform the outcome to time differences, ∆Yjt=Yjt− Yjt−1, or growth rates, 100×∆Yjt/Yjt−1.

Similarly, one could measure outcomes in differences with respect to pre-intervention means,

Ỹjt = Yjt − (1/T0)
∑T0

h=1 Yjh (Ferman and Pinto, 2018). Consider the particular case where a

synthetic control is calculated on the basis of all pre-intervention outcomes (equally-weighted).

That is, each of the T0 rows of X1 and X0 contains the outcome values in one of the pre-

intervention periods for the treated unit and the donor pool, respectively, and all pre-intervention

periods carry the same weight in the calculation of the synthetic control. For this particular case,

measuring the outcomes in X1 and X0 in deviations with respect to the units’ pre-intervention

means is equivalent to a proposal in Doudchenko and Imbens (2016), who measure outcomes

in levels but allow for a constant shift in the synthetic control fit, X1 − αIk×1 −X0W (with

t-th row equal to Y1t − α−w2Y2t − · · · −wJ+1YJ+1t), where Ik×1 is a vector of ones of the same

dimension as X1. As explained in Doudchenko and Imbens (2016), allowing for a constant shift

between X1 and X0W makes little sense in more general settings, when multiple covariates of

different scales, instead of pre-intervention outcomes only, are included in X1 and X0. Notice,

however, that measuring outcomes in deviations with respect to their pre-intervention means

instead of allowing for a constant shift between X1 and X0W may still be useful to account for

differences in the level of the outcomes across units, even if X1 and X0 include other predictors,

16For example, Abadie et al. (2015) find that because inflation levels were particularly low for West Germany
before the reunification, the value of this variable cannot be closely reproduced by a synthetic control composed
by other OECD countries. See Table 1.
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aside from pre-intervention outcomes.

Transformations of the outcome variable like those in the previous paragraph may be useful in

some cases because, as evidenced in the vast difference-in-differences literature, there are in-

stances when a comparison group can reproduce the changes in the outcome variable for the

unit of interest even if the level of the outcome variable cannot be reproduced. In other cases,

however, credible counterfactuals require reproducing not only the trend of the outcome variable

for the treated but also the level. For example, some formulations of the convergence hypoth-

esis in economic growth imply that countries with different levels of per-capita GDP will tend

to experience different growth rates on average, in the absence of an intervention. Similarly,

non-linearities in labor earnings profiles over the life cycle imply that differences in the age dis-

tribution across populations will typically result in differences in the growth of labor earnings.17

More generally, there may not exist a combination of untreated units that provide a credible

approximation to the treated units, and the conventional synthetic control estimator should not

be used in that case.

It should also be noted that differencing the dependent variable may result in a substantial

increase in the part of the variance of the outcome that is attributable to noise, potentially

inducing an increase in bias. As an example, consider the linear factor model in equation (10).

Differencing equation (10) we obtain

∆Y N
jt = ∆δt + ∆θtZj + ∆λtµj + ∆εjt,

where ∆Y N
jt = Y N

jt − Y N
jt−1 with analogous expressions for ∆δt, ∆θt, ∆λt, and ∆εjt. Notice first

that the differenced equation retains the linear factor structure. Notice also that differencing

the outcome may help control the bias when the vectors of common factors θt and λt, or at

least some of their components, vary little in time. In that case, the magnitudes of ∆θt and

∆λt may be small even if the magnitudes of θt and λt are large. This is the usual rationale for

working with differenced outcomes and the basis for difference-in-differences estimators. There

17Notice that for non-linearities in the process that generates Y N
it may require that, for each unit j contributing

to the synthetic control, Xj is reasonably close to X1. Section 8 describes a synthetic control estimator with
weights that penalize ‖X1 −Xj‖.
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may be opposing forces at play, however. Suppose, in particular, that the idiosyncratic shocks,

εjt, are independent or roughly independent in time. Then, the variance of ∆εjt is larger than the

variance of εjt. Now, following the characterization of the bias in Section 3.3, a larger residual

variance may result in a higher risk of overfitting and an increase in the bias of the synthetic

control estimator.

Time horizon. The effect of some interventions may take time to emerge or to be of sufficient

magnitude to be quantitatively detected in the data. An obvious but unsatisfying approach to

this problem is to wait until the effects of the intervention run their course. A more proactive

approach is to use surrogate outcomes or leading indicators of the outcome variable of interest.

6. Data Requirements

This section discusses data requirements for credible applications of synthetic controls. Like

many of the contextual requirements in the previous section, the data requirements discussed

here apply not only to synthetic control estimation but, more generally, to comparative case

study methods.

Aggregate data on predictors and outcomes. From the previous discussion, it can be seen that

the synthetic control method requires the availability of data on outcomes and predictors of the

outcome for the unit or units exposed to the intervention of interest and a set of comparison units.

Predictors and outcomes are often series routinely reported by government agencies, multilateral

organizations and private entities. Examples of these types of outcomes are state-level crime

rates in the U.S. (Donohue et al., 2019), country-level per-capita GDP (Abadie et al., 2015), and

state-level cigarette consumption statistics in the U.S. (Abadie et al., 2010), which are routinely

reported in publications produced or commissioned by the FBI, the World Bank and tobacco

industry groups, respectively. Sometimes, when aggregate data do not exist, aggregates of micro-

data are employed in comparative case studies. For example, in his study of the labor market

effects of the Mariel Boatlift in Miami, Card (1990) uses micro-data from the Current Population

Survey (CPS) to estimate aggregate values for wage rates and unemployment for workers in

Miami and a set of four comparison cities before and after the Mariel Boatlift. Similarly, Bohn
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et al. (2014) use data from the CPS to estimate the fraction of the population composed by

non-citizens Hispanic by state in the U.S.

Sufficient pre-intervention information. The credibility of a synthetic control estimator depends

in great part on its ability to steadily track the trajectory of the outcome variable for the affected

unit before the intervention. As discussed in Section 3.3, Abadie, Diamond, and Hainmueller

(2010) show that if the data generating process follows a linear factor model, then the bias of the

synthetic control estimator is bounded by a function that is inversely proportional to the number

of pre-intervention periods (provided that the synthetic control closely tracks the trajectory of

the outcome variable for the affected unit during the pre-intervention periods). Therefore, when

designing a synthetic control study, it is of crucial importance to collect information on the

affected unit and the donor pool for a large pre-intervention window.

A caveat to the preference for a large number of pre-intervention periods is given by the possibility

of structural breaks. Consider the linear factor model of equation (10). In this model, structural

stability is represented by the restriction of constant factor loadings. Even if the model is a

good representation of the distribution of the data at a relatively short time scale, its accuracy

may suffer once we allow the number of periods to be large enough. Choosing v1, . . . , vk to

up-weight the most recent measures (relative to the prediction window) included in X1 and X0

helps alleviate structural instability concerns.

With a small number of pre-intervention periods, close or even perfect fit of the predictor values

for the treated unit may be spuriously attained, in which case the resulting synthetic control

may fail to reproduce the trajectory of the outcome for the treated unit in the absence of the

intervention. The severity of this problem can be diminished if powerful predictors of post-

intervention values of Y N
jt , aside from pre-intervention values of the outcome, are included in

Xj, reducing the residual variance and, as a result, the risk of overfitting.

Sufficient post-intervention information. This data requirement derives partly from the Time

horizon contextual requirement in Section 5. The evaluation data must include outcome mea-

sures that are possibly affected by the intervention and are relevant for the policy decision or
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Figure 3: Backdating the 1990 German reunification application

scientific inquiry that is the object of the study. This may be problematic if the effect of an

intervention is expected to arise gradually over time and if no forward looking measures of the

outcome are available. Conversely, in some practical instances, the effect of an intervention may

dissipate rapidly after showing substantial effectiveness for a few initial periods. Extensive post-

intervention information allows a more complete picture of the effects of the intervention, in time

and across the various outcomes of interest.

7. Robustness and Diagnostic Checks

The credibility of a synthetic control estimator depends on its ability to reproduce outcomes for

the treated unit in the absence of the intervention. This section presents diagnostic checks that

can be used to evaluate the credibility of synthetic control counterfactuals in actual applications,

as well as robustness exercises to assess sensitivity of results to changes in the design of the study.

Backdating. The possibility of backdating was discussed in Section 5 as a way to address anticipa-

tion effects on the outcome variable before an intervention occurs. In the absence of anticipation

effects, the same idea can be applied to assess the credibility of a synthetic control in concrete

empirical applications. Figure 3 shows the result of estimating the effect of the 1990 German
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reunification with the intervention backdated to 1980. Two important features of the results are

as follows. First, as one would hope for, the synthetic control estimator closely tracks per-capita

GDP for West Germany in the 1981-1990 period, before the start of the actual intervention.

This is the“in-time placebo test” in Abadie et al. (2015) and similar to the “pre-program test”

in Heckman and Hotz (1989). The absence of estimated effects prior to the intervention provides

credibility of the synthetic control estimator, as it demonstrates that the synthetic control is able

to reproduce the trajectory of the outcome variable for the treated unit before the intervention

occurs. Second, a gap between per-capita GDP for West Germany and its synthetic control

counterpart appears around the time of the German reunification, as in Figure 1(b). This is

the case even when the intervention is ten-year backdated in the data and the procedure uses

no information on the timing of the actual intervention. The shape and direction of the gap

in Figure 3 is similar to that of Figure 1(b), albeit of a somewhat lower magnitude. The fact

that the estimated effect of the German reunification appears shortly after 1990 even when the

intervention is artificially ten-year backdated in the data provides credibility to the synthetic

control estimator of the 1990 German reunification.

Robustness tests. Regardless of the estimation method employed in the analysis, the main con-

clusions of an empirical study should display some level of robustness with respect to changes

in the study design. In the context of synthetic controls, two important ways the design of a

study may influence results are (i) the choice of units in the donor pool, and (ii) the choice of

predictors of the outcome variable. The first choice corresponds to the columns in X0, and the

second one corresponds to the rows in [X1 : X0].

As a example of a robustness test, Figure 4 reports the results of a leave-one-out re-analysis of

the German reunification data in Abadie et al. (2015), taking from the sample one-at-a-time each

of the countries that contribute to the synthetic control in Table 2. All leave-one-out estimates

closely track the per-capita GDP series for West Germany before 1990. The resulting estimates

for the years after the reunification are all negative and centered around the result produced using

the entire donor pool. The main conclusion of a negative estimate of the German reunification on

per-capita GDP is robust to the exclusion of any particular country. In other examples, however,
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results may not be as robust as those in Figure 4, and the scientific significance of the estimates

should be evaluated with that information in mind. If the exclusion of a unit from the donor

pool has a large effect on results without a discernible change in pre-intervention fit, this may

warrant investigating if the change in the magnitude of the estimate is caused by the effects of

other interventions or by particularly large idiosyncratic shocks on the outcome of the excluded

untreated unit.
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Figure 4: Leave-one-out estimates of the effect of the 1990 German reunification

8. Extensions and Related Methods

As the literature on synthetic control methods and related methods has greatly expanded in

recent years, it has become increasingly difficult for researchers interested in applying these

methods to figure out what is available where. In this section, I provide a brief guide to the

recent contributions in the area. This represents only an incomplete snapshot of a literature that

is rapidly evolving.

Multiple treated units. Several recent articles consider estimation and inference with synthetic

controls for the case where there are multiple treated units. Notice that the presence of multiple
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treated units does not give rise to additional conceptual challenges for the estimation of synthetic

controls. Treatment effects can be estimated for each treated unit separately and aggregated in

a second step if desired. However, the presence of multiple treated units creates some practical

problems for estimation, as well as new challenges and opportunities for inference.

A potential complication with synthetic control estimation is that the minimizer of equation (7)

subject to the weight constraints may not be unique, especially if the values of the predictors

for a treated unit fall inside the convex hull of the values of the predictors for the donor pool.

Suppose, for now, that only the first unit is treated. If X1 belongs to the convex hull of the

columns of X0, this implies that we can find W ∗ such that X1 = X0W
∗. Moreover, the number

of minimizers to equation (7) may be (and will typically be) infinite.18 That is, there may exist

an infinite number of solutions to the problem of minimizing of equation (7), subject to the

weight constraints, that perfectly reproduce X1. An algorithm minimizing equation (7) subject

to the weight constrains may select a solution, W ∗, with positive entries for units that are far

away from the treated unit in the space of the predictors, even when an alternative solution

exists based only on units with predictor values similar to X1. This may, in turn, lead to large

interpolation biases that remain unchecked under the illusion of perfect fit, X1 = X0W
∗.19

Even in moderate dimensions, k, the curse of dimensionality works to keep treated observations

outside of the convex hull of the units in the donor pool. Therefore, in settings with one treated

unit, multiplicity of solutions is rarely an issue, and if it arises it can often be easily addressed

by restricting the donor pool to units with predictor values most similar to the values of the

predictor for the unit exposed to the treatment. However, in settings with many treated and

untreated units, multiplicity of solutions and how to choose among them become important

issues for estimation. Moreover, large interpolation biases may also arise in settings where the

predictor values for treated units fall outside the convex hull of the predictor values for the units

in the donor pool, especially when the units contributing to synthetic controls are far away from

18If W ∗
1 and W ∗

2 are both minimizers of equation (7) subject to the weight constrains, then so is aW ∗
1 + (1−

a)W ∗
2, for a ∈ (0, 1). This implies that the number of solutions to the minimization equation (7) given the weight

constraints can only be one or infinity.
19Notice, however, that perfect fit, X1 = X0W

∗, where W ∗ minimizes equation (7) subject to the weight
constraints, is indicative of the possibility of infinite solutions.

37



the treated units in the space of predictors. That is, there may be cases such that X1 ≈X0W
∗

but where Xj greatly differs from X1, for some unit j contributing to the synthetic control.

To address these challenges, Abadie and L’Hour (2019) propose a synthetic control estimator

that incorporates a penalty for pairwise matching discrepancies between the treated units and

each of the units that contribute to their synthetic controls. Consider a setting with I treated

units and J untreated units. We will index observations so that the treated units come first.

That is, units j = 1, . . . , I are treated and units j = I + 1, . . . , I + J are untreated, with I + J

units in total. As in previous sections, Xj is the vector of predictor values for unit j, and X0 is

the matrix of the predictor values for the units in the donor pool. To simplify the exposition, I

will abstract from the choice of v1, . . . , vk, which can be implemented (at a higher computational

cost) using the procedure in Section 3.2. For λ > 0, the estimator in Abadie and L’Hour (2019)

minimizes

‖X i −X0W ‖2 + λ
I+J∑
j=I+1

wi ‖X i −Xj‖2 , (13)

with respect to W = (wI+1, . . . , wI+J)′, for each treated unit, i = 1, . . . , I, subject to the

constraints that the weights wI+1, . . . , wI+J are non-negative and sum to one.20 The first

term in equation (13) is the aggregate discrepancy between the predictor values for treated

unit i and its synthetic control. The second term in equation (13) penalizes pairwise matching

discrepancies between the predictor values for unit i and each of the units that contribute to

its synthetic control, weighted by the magnitudes of their contributions. The penalty term is

added to equation (13) with the aim of reducing interpolation biases. As λ→∞, the penalized

estimator converges to one-to-one matching. As λ → 0, the estimator uses an aggregate of

pairwise matching discrepancies weighted by W to select among all synthetic controls that

attain the minimal value for ‖X i −X0W ‖. Values of λ between zero and infinity trade off

aggregate fit of the synthetic control and pairwise fit of each of the units that contribute to it.

Abadie and L’Hour (2019) show that if λ > 0, then the minimizer of equation (13) is unique

and sparse (provided that the columns of X0 are in general quadratic position, see Abadie and

L’Hour (2019) for details). They also provide cross-validation techniques to select λ.

20Although this is not reflected in the notation in equation (13), λ may depend on i.
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Let W ∗
i = (w∗iI+1, . . . , w

∗
iI+J)′ be the solution to the minimization problem in equation (13).

Then, the estimated treatment effect for i = 1, . . . , I and t = T0 + 1, . . . , T is as in (8),

τ̂it = Yit −
I+J∑
j=I+1

w∗ijYjt, (14)

with average treatment effect given by

τ̂t =
1

I

I∑
i=1

τ̂it.

In many instances, especially where the sample units are aggregates, like regions or countries,

a weighted average (e.g., population-weighted, or GDP-weighted) treatment effect may be most

relevant.

Dube and Zipperer (2015) and Abadie and L’Hour (2019) propose extensions of the permutation

methods in Abadie et al. (2010) to the case with multiple treated units. They employ rank-based

statistics on the permutation distribution of treatment effects, where the identity of the treated

units is permuted at random in the data. In particular, Abadie and L’Hour (2019) propose the

following simple generalization of the permutation test in Abadie et al. (2010). They consider

a setting with I treated units and J untreated units. In each permutation b = 1, . . . , B, the

identities of the I treated units are reassigned in the data among the I + J units in the sample,

and statistics rb,1, . . . , rb,I are calculated for the units coded as treated in the permutation. These

statistics could be (bias-corrected) synthetic control estimates of treatment effects, or rescaled

versions that take into account the pre-intervention fit as in equation (12), or their absolute

values, positive parts, or negative parts, depending on the context. Notice that when I is

small relative to I + J , it may be possible to consider all possible treatment reassignments, in

which case B is equal to (I + J)-choose-I. If considering all possible treatment reassignments

is computationally expensive, inference can be based on B random draws from all subsets of

I units in the sample. Let r0,1, . . . , r0,I be the same statistics calculated for the actual treated

units. B permutation repetitions, in addition to the original sample values for treatment, produce

I × (B + 1) statistics, r0,1, . . . , r0,I , . . . , rB,1, . . . , rB,I . Now, for each b = 0, . . . , B, one can

calculate tb equal to the sum of the ranks of rb,1, . . . , rb,I within r0,1, . . . , r0,I , . . . , rB,1, . . . , rB,I .
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The permutation inference in Abadie and L’Hour (2019) is based on the “extremeness” of the

statistic t0 within the permutation distribution t0, t1, . . . , tB. Notice that, for I = 1 this mode of

inference amounts to the permutation test in Abadie et al. (2010).

Hainmueller (2012) and Robbins et al. (2017) consider also settings with multiple treated units.

Instead of producing a separate synthetic control for each treated unit, they calculate a single

synthetic control to match aggregate values of the predictors between the treated and non-treated

samples. As in the usual synthetic control estimator, the weights in Hainmueller (2012) and

Robbins et al. (2017) are non-negative and sum to a pre-determined constant (typically equal to

one, or to the number of treated units, depending on the scaling of the variables in the data-set).

These estimators require that there is at least a convex combination units in the donor pool that

exactly matches a pre-specified set of moments of the predictors for the treated units. Among

the sets of weights that perfectly reproduce the moments for the treated sample, Hainmueller

(2012) and Robbins et al. (2017) choose the one that minimizes a measure of discrepancy with

respect to constant weights.

Bias correction. Another practical complication in settings with many treated units is that,

even with a moderate k, the predictor values for some of the treated units may not be closely

reproduced by a synthetic control, or may be closely reproduced only by combinations of units

with large pairwise matching discrepancies in predictor values with respect to the treated unit.

At the same time, including those ill-fitted units in the calculation of the aggregate effect may be

important for the desired interpretation of the estimate (e.g., as an estimate of the average effect

of the treatment on the treated). In that case, one could be concerned about the potential biases

produced by matching discrepancies between the values of the predictors for the treated units

and those for the respective synthetic controls.21 Bias-corrections play also an important role

reducing regularization biases in inferential methods for regression-based variants of synthetic

controls (see, e.g., Arkhangelsky et al., 2019; Chernozhukov et al., 2019b).

Abadie and L’Hour (2019) and Ben-Michael et al. (2019) propose modifications of the synthetic

21Related to this problem, Ferman and Pinto (2018) and Botosaru and Ferman (2019) study the properties
of synthetic control estimators for case where the value of the predictors for a treated unit cannot be closely
matched by a synthetic control.
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control estimator along the lines of the bias-correction techniques of Rubin (1973), Quade (1982),

and Abadie and Imbens (2011). They use regression-adjustments to attenuate the bias of syn-

thetic control estimators in settings where the synthetic control counterfactual is constructed

using untreated units with values of the predictors that do not closely reproduce the predictor

values for the treated unit or units. For t = T0 + 1, . . . , T , let µ̂0t be a sample regression function

(parametric or nonparametric) estimated by regressing the untreated outcomes, YI+1,t, . . . , YI+J,t

on the values of the predictors for the untreated units, XI+1, . . . ,XI+J . The bias-corrected

synthetic control estimator for unit i is

τ̂it =

(
Yit −

I+J∑
j=I+1

w∗ijYjt

)
−

I+J∑
j=I+1

w∗ij

(
µ̂0t(X i)− µ̂0t(Xj)

)
. (15)

The first term on the right-hand side of (15) is the synthetic control estimator in (14). The second

term uses a regression adjustment to correct for discrepancies between the predictor values for

the treated unit and the predictor values for the units that contribute to the synthetic control.

Alternatively, the estimator in (15) can be expressed as

τ̂it =
(
Yit − µ̂0t(X i)

)
−

I+J∑
j=I+1

w∗ij

(
Yjt − µ̂0t(Xj)

)
. (16)

Equation (16) provides an interpretation of the bias-corrected synthetic control estimator as a

synthetic control estimator applied to regression residuals. The bias correction in equation (16)

is related to the proposal in Doudchenko and Imbens (2016) to residualize the outcomes with

respect to covariates before calculating synthetic controls.

A different avenue to evaluate the bias of synthetic control estimators, which was discussed in

Section 7, is given by the availability of pre-intervention periods, when the effect of the treatment

is not yet realized. In the absence of anticipation effects, estimates of treatment effects before

the intervention are reflective of estimation biases. If biases are stable in time, estimates of

those biases could be used to correct synthetic control estimates. Bias adjustments of this type,

which are closely related to difference-in-differences methods, are proposed in Arkhangelsky et al.

(2019) and Chernozhukov et al. (2019b).
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Regression-based methods and extrapolation. Several articles have contributed regression-based

estimators for synthetic controls. These procedures allow extrapolation by considering synthetic

controls that are not convex combinations of the units in the donor pool. Doudchenko and

Imbens (2016) consider an estimator that fits all pre-treatment outcomes for the treated, with

weights that may be negative and may not sum to one, and allow for a constant shift in the level

of the synthetic control estimator. They propose to use an elastic net—that is, a combination of

lasso (L1) and ridge (L2) penalties—to regularize the weights. The counterfactual estimates for

t = T0 + 1, . . . , T in Doudchenko and Imbens (2016) are

Ŷ N
1t = α̂ +

J+1∑
j=2

ŵjYjt, (17)

where α̂, ŵ2, . . . , ŵJ+1 minimize

T0∑
t=1

(
Y1t − α−

J+1∑
j=2

wjYjt

)2

+ λ1

(
1− λ2

2

J+1∑
j=2

w2
j + λ2

J+1∑
j=2

|wj|

)
, (18)

with respect to α,w2, . . . , wJ+1 ∈ RJ+1 (unrestricted), and λ1 ≥ 0 and 0 ≤ λ2 ≤ 1 are regu-

larization parameters selected by cross-validation. To incorporate additional predictors in their

estimation procedure, Doudchenko and Imbens (2016) propose to use least squares in a first step

to residualize the outcomes Yjt for j = 1, . . . , J + 1 in equation (18) with respect to any other

covariates. Chernozhukov et al. (2019a) consider different penalty terms, including lasso regular-

ization (i.e., λ2 = 1) in the context of an inferential procedure for synthetic controls. Regression

estimators of this type are also related to the panel data approach to program evaluation esti-

mator in Hsiao et al. (2012), where λ1 = 0 and the parameters in equation (17) are estimated

by unpenalized least squares. Li (2019) considers the same estimator as in Hsiao et al. (2012),

but regularizes the weights ŵ2, . . . , ŵJ+1 to be non-negative.

Arkhangelsky et al. (2019) introduce a synthetic control estimator that weights not only the

units in the control group, but also the pre-intervention time periods, to approximate the coun-

terfactual of interest. The time weights in Arkhangelsky et al. (2019) play a similar role as the

predictor weights, v1, . . . , vk, of Section 3.2. They reflect the importance of each of the individual

42



predictors, which in the leading version of the estimator of Arkhangelsky et al. (2019) are past

outcome values.

Matrix completion/estimation methods. Amjad et al. (2018, 2019) and Athey et al. (2020)

propose related methods that use tools from the matrix completion/matrix estimation litera-

ture. Suppose, as before, that unit j = 1 is the treated unit, and units j = 2, . . . , J + 1 are

not treated. Amjad et al. (2018) posit a non-linear factor-structure model for the untreated,

Y N
jt = f(µj, λt) + εjt, with j = 2, . . . , J + 1 and t = 1, . . . , T , where εjt is random noise. Their

framework allows for the presence of missing values in the matrix {Y N
jt }, with j = 1, . . . , J + 1,

and t = 1, . . . , T . Using matrix estimation methods, in particular, singular value thresholding

(see Chatterjee, 2015), Amjad et al. (2018) estimate a low-rank approximation, {M̂jt}, to the ma-

trix {Mjt} = {f(µj, λt)}. The objects M̂jt are used to de-noise the outcomes Y N
jt and to impute

missing values, if any. Then, synthetic controls are obtained as linear combinations of M̂jt, with

coefficients estimated by ridge regression of Y1t on M̂2t, . . . M̂J+1t in the pre-intervention periods.

The estimator in Amjad et al. (2018) does not incorporate covariates, using data on outcomes,

Yjt, only. Amjad et al. (2019) modifies the estimator in Amjad et al. (2018) to incorporate

additional variables aside from the outcome of interest, under the assumption that all variables

depend on common latent factors. Athey et al. (2020) postulate the model Y N
jt = Mjt + εjt, for

j = 1, . . . , J + 1 and t = 1, . . . , T , where εjt is again random noise. In their framework, missing

entries in the matrix {Y N
jt }, with j = 1, . . . , J+1 and t = 1, . . . , T , arise naturally for the treated

observation (or treated observations, if multiple units are treated) in the post-treatment periods.

Athey et al. (2020) assume that the matrix {Mjt}, with j = 1, . . . , J + 1 and t = 1, . . . , T , is

low-rank, which allows them to obtain an estimate, {M̂jt}, via matrix completion techniques.

The estimated counterfactual outcomes without the treatment for the treated are the values of

M̂jt such that Y N
jt is missing. Extensions allow for models with covariates and the inclusion of

time fixed effects and unit fixed effects (separate from the low-rank matrix, Mjt).

Inference. Several studies have proposed inferential tools for synthetic controls as alternatives to

the permutation test in Section 3.5. Firpo and Possebom (2018) propose several generalizations

of the permutation test in Section 3.5 and contribute confidence sets based on inverting the
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results of these tests. In a repeated sampling framework for stationary data and large T0, Hahn

and Shi (2017) propose to apply the end-of-sample instability test of Andrews (2003) to obtain

an inferential procedure for synthetic control estimators. In the context of synthetic control

estimators, the end-of-sample instability test of Andrews (2003) is related to the backdating

ideas of Section 7. It compares the values of treatment effects computed for the T − T0 post-

intervention periods to the distribution of the of same values computed for every subset of T −T0
consecutive pre-intervention periods. Related also to Andrews’s end-of-sample instability test,

Chernozhukov et al. (2019a) devise a sampling-based inferential procedure for synthetic controls

and related methods that employs permutations of regression residuals in the time dimension. In

particular, Chernozhukov et al. (2019a) assume Y N
1t = PN

t + ut, where u1, . . . , uT are stationary

and weakly dependent with mean zero. Let τT0+1, . . . , τT be the effects of the treatment on

the treated unit (unit one) at times t = T0 + 1, . . . , T .22 The potential outcome under the

intervention is Y I
1t = PN

t + τt + ut for t > T0. To simplify the exposition, assume that u1, . . . , uT

are i.i.d. Then, the distribution of a function, S(uT0+1, . . . , uT ), of the post-intervention values

of ut should be the same as the distribution of S(uπ(T0+1), . . . , uπ(T )), where π(1), . . . , π(T ) is

a random permutation of 1, . . . , T . Suppose for now that PN
t is known. Then, under a null

hypothesis, τT0+1 = aT0+1, . . . , τT = aT , we can compute ut = Y1t−PN
t −at, where at = 0 for 1 ≤

t ≤ T0. As a result, we can test the null hypothesis by comparing the value of S(uT0+1, . . . , uT )

to its permutation distribution, that is, the distribution of S(uπ(T0+1), . . . , uπ(T )), which can

be directly computed in the data. A feasible implementation of the test requires estimation

of the residuals, u1, . . . , uT . In the context of the synthetic control method, Chernozhukov

et al. (2019a) adopt the model PN
t =

∑J+1
j=2 wjYjt with non-negative weights that sum to one,

and E[utYjt] = 0 for j = 2, . . . , J + 1, and implement their test on constrained least squares

residuals, û1, . . . , ûT . The proposal in Chernozhukov et al. (2019a) differs from other synthetic

control procedures in two important respects. First, while much of the literature on synthetic

controls has adopted the linear factor model of Section 3.3 as a working model to understand

the properties of synthetic control estimators, Chernozhukov et al. (2019a) adopt instead the

22To be consistent with the notation for PN
t and ut and because only unit one is treated, here I drop the

subscript indicating that identity of the treated unit from the notation for treatment effect.
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restriction E[utYjt] = 0 for j = 2, . . . , J+1 to estimate PN
t .23 They show, however, that regardless

of the validity of the model, their testing procedure remains valid as long as the estimated

residuals, û1, . . . , ûT are exchangeable under the null hypothesis. Second, in contrast to other

synthetic control procedures that compute the weights, w2, . . . , wJ+1 using pre-intervention data

only, in the inferential procedure of Chernozhukov et al. (2019a) the synthetic control weights are

estimated under the null hypothesis, τT0+1 = aT0+1, . . . , τT = aT , using data on Y N
it = Yit− at for

all periods, including the periods after the intervention. For a similar set of models, Chernozhukov

et al. (2019b) propose bias-corrected synthetic control estimation and confidence intervals for the

mean value of the treatment effect over the post-intervention period, (τT0+1 + · · ·+ τT )/(T − T0)

in settings when both T0 and T − T0 are large. Similar to difference-in-differences, their bias-

correction procedure of Chernozhukov et al. (2019b) adjusts for differences in pre-intervention

outcomes between the treated unit and the synthetic control. Confidence intervals are based on

an asymptotically pivotal t-statistic and centered on the average of K-fold cross-fitted versions of

the bias-corrected synthetic control estimate. Cattaneo et al. (2019) propose predictive intervals

for synthetic control estimators and related methods. They consider a setting where data are

stationary (perhaps after a transformation) and adopt the predictive model Y N
1t =

∑J+1
j=2 wjYjt +

ut, where the weights w2, . . . , wJ+1 are defined to minimize E[(Y N
1t − w̃2Y2t − · · · − w̃J+1YJ+1t)

2]

with respect to w̃2, . . . , w̃J+1, for each t = 1, . . . , T subject to weight constraints. Cattaneo et al.

(2019) use pre-intervention data along with the assumption of stationarity to obtain bounds on∑J+1
j=2 wjYjt and ut for t > T0, which they combine to obtain a predictive interval on Y N

1t for

t > T0.

Other contributions. In this article, I have provided a brief description of selected strands of

the literature on synthetic controls and related methods, starting with the canonical estimator

in Sections 2 and 3, and describing some extensions and related methods in the current section.

23To understand the differences between these two frameworks, notice that when the data are generated by the
linear factor model of Section 3.3, and there is an unbiased synthetic control—that is, a synthetic control with
weights, w2, . . . , wJ+1 that exactly reproduces Z1 and µ1—then, the restriction E[utYjt] = 0 for j = 2, . . . , J + 1

and ut = Y N
1t −

∑J+1
j=2 wjYjt does not hold in general (see Ferman and Pinto, 2018). One exception is given by the

results in Ferman (2019), which imply that E[utYjt] = 0 for j = 2, . . . , J + 1 will approximately hold as J →∞
if there are weights, w2, . . . , wJ+1 that asymptotically recover Z1 and µ1 and are increasingly diluted among the
units in the donor pool.
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The literature is vast in its totality, however, and there are many noteworthy contributions I

did not cover. They include Bai and Ng (2019), Brodersen et al. (2015), Gobillon and Magnac

(2016), Gunsilius (2020), Kennedy-Shaffer et al. (2020), Viviano and Bradic (2019), and Xu

(2017), among many others. Many of these are much recent proposals. Samartsidis et al. (2019)

studies the performance of the canonical synthetic control estimator and of related methods

in the context of the German reunification example of Section 3.2. As the set of methods on

synthetic controls keeps expanding and enriching the applied econometrics toolkit, this is still a

young literature and much remains to be done. I mention some open areas in the final section

of this article.

9. Conclusions

Synthetic controls provide many practical advantages for the estimation of the effects of policy

interventions and other events of interest. However, like for any other statistical procedure (and

especially for those aimed at estimating causal effects), the credibility of the results depends

crucially on the level of diligence exerted in the application of the method and on whether

contextual and data requirements are met in the empirical application at hand. In this article,

I emphasize the notion that mechanical applications of synthetic controls that do not take into

account the context of the investigation or the nature of the data are risky enterprises. To this

end, the article discusses the methodological underpinnings of synthetic control estimators and

the conditions under which they provide suitable estimates of causal effects. It also describes

how the analysis may be modified in the cases when those conditions do not hold. Finally, the

article discusses some recent extensions that widen the applicability, robustness and flexibility

of the method.

Open areas of related research abound, both methodological and empirical. Results on

sampling-based inference, external validity, sensitivity to model restrictions, estimation with

multiple interventions, and the identification of the channels though which the effect of an event

or intervention operates, to mention a few, are scant or absent in the synthetic controls litera-

ture. An area of recent heightened interest regarding the use of synthetic controls is the design

of experimental interventions in settings where the intervention of interest can only be applied
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to one or a small number of aggregate units. In addition, existing results on robust and efficient

computation of synthetic controls are scarce, and more research is needed on the computational

aspects of this methodology. On the empirical side, many of the events and the policy interven-

tions economists care about take place at an aggregate level, affecting entire aggregate units like

school districts, cities, regions, or countries. This is exactly the setting synthetic controls were

designed for, and potential applications of synthetic controls in economics are many.
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