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Extended Methods 
 
The Zipf plot shown in Fig.1C of the main text is a log-log plot of the survival function against the number 
of secondary cases, and the linearly decreasing behavior it shows suggests a power-law scaling of the 
form Pr(Z>t)~t-α for large t. The value of the power-law coefficient, α≈1.45 (95% CI: [1.38,1.51]), is greater 
than 1. Equivalently, this observation indicates that the tails of Z—as quantified by the threshold 
exceedance values {Zi –u|Zi≥u}—can be described by the generalized Pareto distribution, with 
corresponding tail index ξ=1/α≈0.7 (95% CI: [0.62,0.76]). That ξ≤1 is significant, since all moments higher 
than 1/ξ diverge for a generalized Pareto distribution (1). 
 
The Zipf plot can be complemented by computing the mean excess function of Z, e(u)=E(Z–u|Z≥u), which 
for a generalized Pareto distribution is linear in u with slope ξ/(1–ξ) (1). Hence, checking for linearity in a 
plot of u against e(u) — a mean excess plot — above some threshold u allows one to verify the existence 
of fat tails. We observed in a meplot that for u>10, e(u) indeed increases approximately linearly with a 
slope of ~1.11 (Fig.1D; 95% CI: [1.02,1.20]; adjusted R2: 0.91), suggesting a value of ξ≈0.5, which is 
qualitatively consistent with the Zipf plot of Fig.1C of the main text. 
 
The Hill estimator of the tail index ξ is  
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where 2≤k≤n and Zn,n≤Zn-1,n≤…≤Z1,n  are order statistics of the sample {Zi}. Plotting 𝜉# against k, we find 
that the value of 𝜉#≈0.6 (95% CI: [0.4,1.0]) observed for a broad range of k is similar to the estimates 
above (Fig.1E of the main text). We found similar values of 𝜉# for two other estimators, the Pickands and 
Dekkers-Einmahl-de Haan estimators (1,2). 
 
Finally, we note here that a negative binomial distribution of Z, with its exponential tail, would have 
predicted the distribution of SSEs to be Gumbel-like if each SSE were indeed a maximum of samples of 
Z. This assertion can be proven by verifying the conditions 
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where Pj=Pr(Z=j), sufficient for any discrete distribution to lie in a Gumbel-like domain of attraction (3). 
Thus, these considerations provide additional evidence suggesting that Z is not negative binomial.  
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