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Mapping global urban land for the 21st century
with data-driven simulations and Shared
Socioeconomic Pathways
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Urban land expansion is one of the most visible, irreversible, and rapid types of land cover/

land use change in contemporary human history, and is a key driver for many environmental

and societal changes across scales. Yet spatial projections of how much and where it may

occur are often limited to short-term futures and small geographic areas. Here we produce a

first empirically-grounded set of global, spatial urban land projections over the 21st century.

We use a data-science approach exploiting 15 diverse datasets, including a newly available

40-year global time series of fine-spatial-resolution remote sensing observations. We find

the global total amount of urban land could increase by a factor of 1.8–5.9, and the per capita

amount by a factor of 1.1–4.9, across different socioeconomic scenarios over the century.

Though the fastest urban land expansion occurs in Africa and Asia, the developed world

experiences a similarly large amount of new development.
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Urban area is a primary nexus of human and environmental
system interactions. Where and how new urban lands are
built result from social, demographic, and economic

dynamics1,2, and transform many aspects of the environment
across spatial and temporal scales, including freshwater quality
and availability (through hydrological cycles)3, extreme pre-
cipitation and coastal flooding (through atmospheric dynamics)4,
biodiversity and habitat loss (through ecological processes)5, and
global warming (through energy use and carbon emissions)6.
Meanwhile, with global population already 55% urban and
becoming more urbanized over time7,8, cities globally are driving
forces of economic value creation and income generation, playing
essential roles in many critical social issues9. The spatial dis-
tribution of urban land also shapes the societal impacts of
environmental stresses, such as human exposure to and health
consequences of air pollution, heatwaves, and vector-borne
diseases10.

To better understand the future of urbanization and inform
new urban development, many have argued for the need of glo-
bal, long-term, spatial projections of potential urban land
expansion11,12. As a global trend, urbanization interacts with
many large-scale forces like economic globalization and climate
change to affect human and earth system dynamics across
scales13. As one of the most irreversible land cover/land use
changes, an urban area, once built, usually remains for the long
term without reverting to undeveloped land, and casts lasting
effects on its residents and connected environments14. Further,
spatial patterns in addition to aggregated total amounts deter-
mine how urban land patches interact with broader contexts15.

However, existing spatial urban land projections are usually
limited to short-term futures and/or small geographic areas16,17.
As a result, integrated socio-environmental studies of longer-term
trends and larger-scale patterns have often assumed static spatial
urban land distribution over time or relied on simple proxies of
urban land12,18, disregarding influential spatial and temporal
variations in the urbanization process. Efforts to capture such
variations in large-scale spatial urban land models have been
impeded by the longstanding lack (until recently) of global,
spatial time series of urban land monitoring data. As a con-
sequence, urban land change research about global trends has
developed to examine samples of existing cities or city regions11.
During the past decades, important new knowledge has emerged
from this kind of local-scale urban studies and their meta-ana-
lyses, but due to the limited scope of their data foundations, the
findings remain difficult, if not impossible, to incorporate in
large-scale forecast models, creating a gap between qualitative
understanding and quantitative models of contemporary urba-
nization for large-scale, long-term studies.

For example, exiting urban theories derived from studies of
individual cities have illustrated that urbanization is a local pro-
cess that can be motivated by different drivers in different places,
and the same drivers in the same geographic area can show
distinctively different effects during different maturity stages of
urbanization19. However, such studies cannot provide informa-
tion on when and where one type of urbanization process tran-
sitions to another for large-scale modeling, and no existing global
urban land model captures these well-acknowledged spatial and
temporal variations: Existing spatial projections17,20 have used a
single model for all times and all world regions (16 or 17 regions)
to project regional total amounts of urban land, without differ-
entiating urbanization maturity stages. The regional totals were
then allocated to grid cells using spatial models based on a single-
year snapshot map of urban land cover. With no calibration to
information on change over time, the models often struggle to
identify locations where urban expansion likely occurs and tend
to allocate new land development to places with high densities of

existing urban land21. These modeling efforts also assumed the
spatial distributions of key drivers remain static over time, lim-
iting their credible applications to near- to mid-term futures.

A related branch of global models focuses on national totals,
leaving out subnational spatial variability. Angel et al.1 used
multiple regression models to investigate how different drivers
affect national total amount of urban land, but did not account
for changes in urbanization maturity over time nor different
urbanization styles across countries. Li et al.22 used 22-year
national data to parameterize for each country a classic sigmoid
model, assuming the S-shaped curve would implicitly capture
different urbanization stages for the country. However, their
results suggest the model may not be responding to drivers in
expected ways, as it generated a large amount of urban expansion
globally in a scenario intended to represent sweeping sustain-
ability trends across sectors (including sustainable land use). This
result confirms the known notion that classic models may need
significant structural changes to correctly capture key variations
of contemporary urbanization2,11.

The absence of empirically grounded, large-scale, long-term,
spatial urban land projections has obscured our outlook for
anticipated global change for a wide range of fields and issues,
and hindered the research communities’ ability to inform global
policy and governance debates concerning urbanization. To fill
this gap, we conducted assorted data-science analyses of 15 best
available global datasets of urbanization-related socioeconomic
and environmental variables at multiple scales, including a newly
available global spatial time series of urban land observations23.
Based on Landsat remote sensing, the data offer the finest spatial
resolution (38 m) and the longest time series (40 years:
1975–2014) possible for global urban land observations (defined
as built-up land). In contrast, the previous best available global
data24, MODIS land cover type, offers yearly snapshots at 500 m
spatial resolution since 2001. With the recent data advances, we
quantified spatial and temporal variations of urbanization in ways
that can be directly incorporated in the construction of an
empirically-grounded urban land change model. Some of the
trends discovered update commonly-held beliefs. The advances in
modeling allowed us, for the first time, to produce potential long-
term futures of global spatial urban land patterns that are
empirically calibrated to generalizable trends evident in historical
observational data. To account for uncertainties associated with
the long-term future, we used the modeling framework in com-
bination with Monte Carlo experiments to develop five scenarios
consistent with the Shared Socioeconomic Pathways (SSPs)25.
This work builds new capacity for understanding global land
change with unprecedented temporal, spatial, and scenario
dimensions. More importantly, it paves the way for better inte-
grated studies of socio-environmental interactions related to
urbanization. Below in the “Results” section we briefly describe
the new data-science-based models, and present trends and pat-
terns seen in our projections. For more information on model
development and validation, please refer to the “Methods” section
and ref. 21.

Results
New data-driven urban simulation models. We developed a pair
of models reflecting the observed spatiotemporal patterns at
national, subnational regional, and spatial scales. Our national
model, Country-Level Urban Buildup Scenario (CLUBS), cap-
tures macroscale effects of population change and economic
growth on the overall urbanization level of countries. It distin-
guishes three empirically-identified urban land development
styles that occur in countries with different urbanization matur-
ity: rapidly urbanizing, steadily urbanizing, and urbanized. Each
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style has its own unique model trained using different drivers and
different model parameters determined by historical data. The
national model, at the beginning of every decade, uses an
empirical classifier to decide for each country which one of the
three styles should be used for estimating its decadal total amount
of new urban land development, according to the country’s
urbanization maturity at that time point. As the country’s con-
dition changes over time, it may switch styles from decade to
decade, and every country’s evolutionary path of urbanization is
tracked. Our spatial model, Spatially-Explicit, Long-term,
Empirical City developmenT (SELECT)21, is also empirically
oriented for long-term projections. It estimates, for 1/8° (roughly
14 km at the Equator) grid cells, the decadal change in the frac-
tion of urban land within each grid, using temporally evolving
spatial drivers. SELECT accounts for both subnational regional-
and local-scale heterogeneity in the urbanization process through
multiple intentionally designed model features, including dividing
the world into 375 subnational regions and modeling their spatial
patterns separately. For example, the continental United States is
modeled as 28 separate regions and China 26 regions (in contrast
to existing models’ 16 or 17 regions globally). The number of
regions (i.e., 375) is not arbitrarily predetermined, but rather
through a data-driven delineation reflecting the impact zones of
existing cities. The national decadal total amount of new urban
land is distributed first among the subnational regions and then
grid cells within each region. A unique model is trained for every
region using drivers most relevant for explaining the region’s
observed change in spatial urban land patterns. Models from
different regions can use different drivers and different model
parameters reflecting their respective past patterns. The structure
and validation of SELECT is fully documented in ref. 21; a
summary is provided in “Methods”.

Using these models, we developed five urban land expansion
scenarios corresponding to SSPs 1–5, named as sustainability,
middle of the road, regional rivalry, inequality, and fossil-fueled
development. The scenarios span a wide range of uncertainties in
drivers of urban land development. The urban land projections
differ across scenarios due to both differences in drivers and
varying model parameter values selected from Monte Carlo
experiments to be consistent with our interpretation of
urbanization styles implied by the SSP narratives. The resulting
projections therefore cover a broad spectrum of plausible urban
futures.

Global trends. The projections show the amount of urban land
on Earth by 2100 could range from about 1.1 million to 3.6
million km2 across the five scenarios (roughly 1.8–5.9 times the
global total urban area of about 0.6 million km2 in 2000). Under
the middle of the road scenario, new urban land development
amounts to more than 1.6 million km2 globally, an area 4.5 times
the size of Germany. Global per capita urban land more than
doubles from 100 m2 in 2000 to 246 m2 in 2100.

The global total amount of urban land strongly depends on
societal trends in years to come (Fig. 1). The lowest amount of
global urban land was projected for the sustainability scenario,
due to low population growth, the rise of less resource-intensive
lifestyles, and international collaborations emphasizing global
environmental and human well-being. The highest scenario is
fossil-fueled development, due to high population growth,
accelerated globalization driven by material-intensive econo-
mies, and low concern for global environmental impacts—all
stimulating sprawl-like development. These factors influence
the urban land projections both as quantitative drivers in the
model, and by qualitatively determining what trajectory (high,
medium, or low) a scenario follows within the uncertainty

range generated by Monte Carlo simulations (more information
in “Methods”).

Results also indicate that similar amounts of urban land may be
produced by scenarios with different driving factors. For example,
sustainability (SSP 1) and regional rivalry (SSP 3) both have
relatively slow urban land expansion. In sustainability, low
population growth and preference for environmentally friendly
lifestyles reduce the demand for urban expansion, and improved
green technologies can make any new development more compact.
In contrast, in regional rivalry, economic and technological
developments are impeded, leaving countries little means to
develop new urban land, even though the prominent consumption
style in the scenario is material-intensive. Similarly, middle of the
road (SSP 2) and inequality (SSP 4) also show similar amounts of
urban expansion. In the middle of the road scenario, urbanization
drivers follow historical patterns, without substantial deviation
from central trajectories within their respective uncertainty ranges.
In inequality, low-income countries follow a slow urbanization
trajectory due to poor domestic economic development, low
internal mobility, and lack of international investment, while more
economically developed countries follow a medium trajectory at
the national level, an aggregate of within-country heterogeneity
across faster and slower developing urban areas.

Regional variations. At the regional level, we find that all world
regions, not just developing regions, can experience more than
4.5-fold urban land expansion in the high urbanization scenario
(SSP 5) by 2100 (Supplementary Table 1). Under the middle of
the road scenario, urban land in Europe (excluding Russia, which
is a separate region in this analysis due to its large land area) is
projected to expand by more than 275 thousand km2, more than
outpacing Africa’s increase of about 193 thousand km2. These
projections result from an often overlooked pattern in observed
land change trends: economically developed regions have not
stopped building new urban land. For example, according to our
own analysis of time series observational data23,26, during the
decade of 2000–2010, more than 15 thousand km2 of new urban
land was built in Europe (excluding Russia), and 17 thousand
km2 in Africa. These similar amounts of urban land development
occurred despite the fact that in 2000, Europe already had more
than 144 thousand km2 urban land (with about 0.6 billion peo-
ple), while Africa had only about 46 thousand km2 urban land
(with about 0.7 billion people). Many European countries have
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Fig. 1 Global total amount of urban land under different scenarios over
the 21st century. The scenarios correspond to the five Shared
Socioeconomic Pathways (SSPs 1–5): sustainability, middle of the road,
regional rivalry, inequality, and fossil-fueled development.
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been consistently expanding urban land areas after their
population growth has stopped. Although the change rate in
percentage terms is much lower than what is seen in Africa
and Asia, the absolute amount of new urban land development is
substantial, reflecting the much larger amount of existing
urban land in the developed world. This observed trend led to
the result that, depending on societal trends and choices, a
large amount of new urban land might be built in the developed
world during the 21st century (Figs. 2 and 3, Supplementary
Fig. 2). Two dynamics observed in the recent past may help
explain such urban expansion patterns. First, even in the regions
and countries whose total population size decreased, their urban
population size continued to grow7. Over the 21st century, we
expect to see more population concentrate in urban areas
globally7,8, and new urban land will be built to support this
change. Second, though functional types of urban land are not
explicitly distinguished in this work, a sizable fraction of urban
land development globally is non-residential, e.g., built-up land
used for industrial, commercial, and institutional purposes. These
developments do not necessarily scale with population size, and
might be driven by shifts in economy, governance, livelihood,
culture, and lifestyle as urbanization matures27–30. Although
these abstract factors are not explicitly modeled, their effects may
be represented in empirical models through implicit relations

with measurable variables (e.g., GDP, urban population share).
Such relations, if present during historical times, are likely
to continue affecting urban land development after population
size stabilizes.

In contrast, developing countries in Africa and South Asia
continue to show the lowest per capita levels of urban land over
the century compared to the rest of the world (Fig. 2b), despite
having the highest projected urban land expansion rates. These
findings modify the common belief that the developing world is
the primary realm of urban expansion. We find that both
developed and developing countries will play substantial roles in
shaping the planet’s urban future.

National styles. At the national level, historical data showed three
distinctive urban land expansion styles driven by different
socioeconomic dynamics, and global countries evolve through the
three styles directionally from rapidly-urbanizing to steadily-
urbanizing to urbanized (Fig. 4, Supplementary Table 2). Present-
day rapidly-urbanizing countries are primarily low-income
developing countries with the most vulnerability to social and
environmental stress, steadily-urbanizing countries are already
moderately urbanized developing countries transitioning into
more stabilized urbanization phases with lower yet steady urban
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Fig. 2 National urban land expansion in the middle of the road scenario. a Global quintile map of urban land expansion rate (%) 2000–2100. b Global
quintile map of per capita urban land area (m2) in 2100 (this variable in 2000 is shown in Supplementary Fig. 1). (Source data are provided as a Source
Data file).
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change rates (at present both India and China are in this cate-
gory), and urbanized countries comprise economically developed
countries and some highly urbanized developing countries
(e.g., Brazil).

Table 1 shows the empirically-determined coefficients of
relevant drivers in the three models for different urbanization
styles, which include different aspects of urban or total land,
urban or total population, and GDP. The results indicate two
patterns: first, the three urbanization styles are driven by different
sets of factors, and second, the same driver casts different effects
on different urbanization styles. Urban land expansion in rapidly-
urbanizing countries is driven by total population change (less so
by urban population change) indicating that their urban land
development has strong ties with basic infrastructure needs that
scale with population size. These countries are the least urbanized
in the world, and changes appear faster (i.e., higher change rates)
when existing urbanization levels are lower (i.e., the base values
are smaller). Urban land expansion in steadily-urbanizing
countries carries significant inertia from the previous decade.
As a transition style, it responds to both factors affecting rapidly-
urbanizing countries and those affecting urbanized countries.
Most significantly, steady urbanization of land is strongly coupled
with urban population increase. Finally, urban land expansion in
urbanized countries shows the flattest change curve and responds
faintly to urbanization of population and GDP change. Moreover,
the GDP effect carries a negative sign, i.e., countries with the
fastest GDP growth tend to have lower urban land expansion
rates, suggesting that the fastest growing economies are less
reliant on new urban land development. This may also relate to
effects of globalization where high-income countries may have
their needs for urban land intensive industries (e.g., production
factories) met by such industries located in lower-income
countries31.

By 2100, most countries globally become urbanized under most
socioeconomic scenarios, while the timing of how soon currently
developing countries transition to more stabilized urbanization
trajectories depends on societal trends (domestic and interna-
tional) reflected in the scenarios (Supplementary Tables 3 and 4).
For example, in scenarios with slow population growth, most

100

SSP 1 : North America SSP 5 : North America

SSP 1 : Africa SSP 5 : Africa

% urban: 0

a

c

b

d

Fig. 3 2100 spatial urban land maps. This figure compares the sustainability scenario (SSP 1) and the fossil-fueled development scenario (SSP 5) for the
most developed and the fastest developing continents (North America and Africa, respectively). a North America under SSP 1. b North America under SSP
5. c Africa under SSP 1. d Africa under SSP 5.
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countries in the rapidly-urbanizing category at the beginning of
the century remain in that category throughout the century. In
contrast, in other scenarios no countries remain in the rapidly-
urbanizing category by mid-century (Supplementary Table 4).
Meanwhile, for urbanized countries, although much flatter
change curves apply compared with urbanizing countries (Fig. 4),
effects of different socioeconomic trends can accumulate over
time and lead to substantial differences in spatial urban land
patterns across scenarios (Fig. 3, Supplementary Fig. 2). In 2100,
both developed and developing countries show roughly three
times as much urban land in the fossil-fueled development
scenario as in sustainability (Supplementary Tables 1 and 5). That
is, moderate amounts of urban land expansion are possible for the
21st century, but will require intentional planning and societal
choices in both developed and developing worlds.

Spatial patterns. At subnational, local levels, our model is the
first to be empirically grounded by observed historical spatial
changes, and its projections show distinctively different spatial
patterns from results of existing global urban land change models.
Most prominently our projections allocate new urban land
development to places with similar characteristics to where urban
expansion happened in the observed past, while existing global
urban land projections tend to allocate new urban development to
places with high existing urban land densities21.

Our projections captured subnational regional variations in
spatial patterns of new urban land development. For example,
within the Unitd States, new urban development is projected to
expand broadly across space along the southeast coast, intensify
urban land density within clusters of existing cities in the
northeast, and emerge as new smaller settlement sites in the
southwest (Fig. 3, see the high urbanization scenario). These
projections reflect observed historical patterns of how urban land
tends to change in these subnational areas, and add novel spatial
details to global urban land modeling.

Our model’s ability to project with subnational, local-scale
variations also allowed it to make educated guesses about where
new large cities might emerge in the future. Existing literature has
established that many existing small settlement sites might
become large or mega cities over the 21st century, due to the
observed pattern that more urban expansion occurs around
medium- to small-sized settlement sites globally7. Our projections
identified potential locations of such booming towns. Currently
small settlement sites that have exhibited fast urban expansion are
projected to continue growing rapidly, and often outpace existing
larger but slowly growing cities, to become sizable future urban
centers. See, for example, the emergence of new sizeable cities in
India under the high urbanization scenario (Fig. 3). Although
global long-term projections should be taken with a grain of salt
in highly local applications, our projections can be considered a
potential indicator for possible future development hotspots.

The spatial patterns of our urban land projections vary
substantially across scenarios (Fig. 3, Supplementary Fig. 2).
The differences are affected by both national total amounts of
urban land and spatiotemporal trends in drivers of urbanization.
The model was able to capture the spatially-explicit divergence
among scenarios because it updates key spatial drivers every time
step (i.e., one decade) and these drivers reflect how urban land
patterns have evolved locally at previous time points. This
allowed spatial patterns under different scenarios to evolve
through different pathways, in contrast to some existing
projections that derive different scenarios by scaling a single
spatial pattern. For example, in Fig. 5, the overall amount of
urban land in the displayed region is similar for SSP 2 in 2100 and
SSP 5 in 2060, but the two maps exhibit different spatial patterns:
Under the middle of the road scenario, urban expansion around
New York City is confined and other smaller cities in the region
experience more growth, while under the fossil-fueled develop-
ment scenario, all city areas show expansive sprawl—consistent
with the narratives of the two scenarios.

Though there are no data for validating long-term spatial
projections, we tested our modeling framework as thoroughly as
data permit. Our spatial model (SELECT) explained high
fractions of variations in its response variable for all 375 subna-
tional regions across the world with low estimation residuals in
short-term applications, and showed advantages when compared
with an example existing urban land change model for making
mid-term projections21. To gain confidence in the model’s long-
term reliability, we also tested its statistical robustness by
examining the model’s reaction to simulated noise, spatial
generalizability by swapping models trained for different subna-
tional regions, and temporal generalizability by leaving one
decade of historical data out of model training for independent
performance evaluation. The model scored satisfactorily in all
tests we ran, and a complete report of these validation results has
been published21. In addition, we examined the plausibility of our
future projections by comparing projected trends and patterns
with urban land change theories already established by existing
literature. For example, cities across the world are generally
becoming more expansive2, i.e., they grow faster in land area than
population size. In our medium to high development scenarios,
most world areas continue to show higher change rates for urban
land than population, leading to increases in per capita amounts
of urban land, while in low development scenarios parts of the
world reverse the historical trend to show more compact urban
land use (Supplementary Tables 6, 1, and 5). The world regions
with reversed trends are different under different scenarios but
coherent with their respective narratives. Though fidelity to
known aggregate patterns like this should be a basic requirement
for projection models, it often cannot be assumed, especially
when the time horizon to be projected is much longer than the
one in available training data. Altogether, the results from model

Table 1 Drivers of urban land expansion and their effects on different styles of urbanization, shown by standardized coefficients
of linear models trained for the three styles.

Urbanized Steadily urbanizing Rapidly urbanizing

Change rate urban land (previous decade)a 0.24 0.35 0.17
Urban share of population (end of decade)a −0.15 −0.2 −0.48
Change rate urban population share (current decade)a 0.09 0.25 0.09
Change rate GDP (current decade) −0.09 −0.1
Change rate population size (previous decade) 0.12 0.13
Land area 0.08 −0.14

aThese variables are used by a k-means clustering algorithm trained on historical data, to classify each country at the beginning of a decade into one of the three urban expansion styles.
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validations and plausibility tests give confidence in the quality of
our projections, and also illustrate the potential of creative data-
science applications for studying complex social processes.

Discussion
Our results demonstrate that a wide range of outcomes for urban
land extent are plausible over the coming century, both in terms
of aggregate amounts and spatial patterns. Given the complexities
of urban land change, the global scope, the long time horizon, and
data limitations (even with recent improvements to data avail-
ability), any approach to such modeling efforts will have both
strengths and limitations.

To maximally take advantage of all information available, we
integrate existing theories and new data. On balance, the method
is data-driven, because the newly available time series of global
spatial urban land we use here offer perspectives that were not
possible before, and we therefore allowed observational evidence
from the data analyses to extend and update existing theories.
However, we view the perspectives offered by existing theories
and new data as a gradient of concepts rather than a black-and-
white distinction. Theory-based stylized-fact models often need to
be empirically calibrated and adjusted to be able to generate
realistic patterns32, and classic machine learning theories such as
the bias-variance decomposition have long recognized the
necessity to incorporate prior knowledge in the structural design
of data-driven models when modeling complex phenomena33,34,
which long-term global urbanization certainly is. Below we
highlight two examples of how existing theories and new data are
combined in our methods, while the integrative principal was
applied throughout our model design.

Example 1: At the national level, we took lessons from the
existing literature that relationships between urban land change
and its drivers change over time and usually do not scale linearly.
While existing theories have not provided insights on how many

urbanization styles are present among countries across the world
and how they transition from one to another, our data-driven
analysis found three unique urbanization styles. Examining the
characteristics of countries falling into each style/cluster, it was
clear that the distinction among clusters is linked to urbanization
maturity. Utilizing these findings, CLUBS can organically model
how global countries change urbanization styles as their urbani-
zation matures, without needing arbitrary input from the analyst.
The data-based new insights enabled improvements to conven-
tional methods that often fit a simple linear model for less than
twenty world regions to capture the same process.

Example 2: When modeling subnational spatial patterns of
urban land, to account for the theoretically-grounded under-
standing that primary drivers of spatial urban land change are
different in different places, we used data to help divide the
world into 375 distinct subnational regions for which inde-
pendent spatial models were developed, while making the set of
driving variables entering the model as inclusive as possible
according to existing literature. We then used a highly flexible
nonparametric statistical-learning method to determine the
relationship between urban land development and each driver
in each subnational region, so that different regions are mod-
eled by different subsets of all input variables using different
relationships. The automated model fitting process also frees
the analyst from having to manually and consistently para-
meterize close to four hundred different models. In contrast,
conventional methods treat the world as less than twenty
regions, and do not capture subnational, regional variations in
urbanization.

A challenge for all long-term modeling of socioeconomic
variables is the necessity to assume some temporal non-
stationarity while the underlying process is bound to change
over time. We addressed this challenge by incorporating a tran-
sition mechanism in the national-level model allowing countries
to change from one national urbanization style to another as their
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Fig. 5 Temporal pathways of urban expansion in northeastern United States under different scenarios. These maps show how different spatial patterns
evolve under various scenarios through different pathways. Spatial patterns can differ, even when the overall amount of urban land in the displayed region
is similar, e.g., SSP 2 in 2100 and SSP 5 in 2060.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15788-7 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2302 | https://doi.org/10.1038/s41467-020-15788-7 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


urbanization processes evolve. In addition, we used different sets
of parameters according to different SSP-based scenarios for
producing alternative urban land development patterns to cap-
ture a wide range of plausible future uncertainties. Nonetheless,
the spatiotemporal dynamics that induce changes to spatial pat-
terns for each subnational region stay the same over time. While
this is a limitation of our method, we still consider it an
improvement over existing models: In comparison to the
commonly-used assumption that new urban development is
primarily attracted to areas with high amount of existing urban
land (which may have not changed for decades), our model
allocates new development primarily to areas sharing similar
characteristics to places of recent, rapid urban expansion, which is
a substantially less constraining approach.

Our method is also well suited to developing alternative urban
land change scenarios, given its responsiveness to different pos-
sible trends in drivers as well as its ability to cover varying
parametric uncertainties. Currently, the projected scenarios do
not incorporate the impacts of potential future environmental
change (e.g., sea level rise, climate change) on urbanization.
Because studying such impacts is one of the scenarios’ planned
uses, the impacts are excluded so that the SSP-based scenarios can
be used as references. This is consistent with SSP practice in other
domains. However, future work could improve the plausibility of
projected urban land patterns by accounting for potential influ-
ence from environmental change.

Finally, as we anticipate continued urban land expansion in the
coming decades, understanding long-term impacts of alternative
urban land patterns can inform policy and planning strategies for
achieving future sustainable development objectives. Our results,
showing a wide range of uncertainties in future urbanization,
underscore the need for improved understanding of interactions
between urbanization and other long-term global changes in
society, economies, and the environment. Our projected scenarios
enable integrated modeling and studies of these interactions, and
can help researchers and policy analysts identify potential path-
ways towards desirable urban outcomes in a globally changing
environment. After all, land use is not destiny. The planet’s urban
future is being shaped by development happening today, and the

time to act for better urban policy, planning, design, and engi-
neering is now.

Methods
Modeling framework. With large-scale investigations of human–environment
interactions in mind, we designed a two-tier modeling framework (Fig. 6) usable in
conjunction with global environmental and climate modeling results. It consists of
the CLUBS model, and the SELECT model. The modeling framework uses glob-
ally-consistent, multi-scale, spatially-explicit data, reflects the local, spatially variant
nature of the urbanization process while maintaining global coverage, functions
well over long time horizons, and offers means to generate scenarios considering
alternative development trajectories.

We projected the fraction of potential future urban land for 1/8° grid cells
covering global land at 10-year intervals throughout the 21st century. The 1/8°
resolution was chosen as a balance between the very different commonly-used
spatial resolutions of global change models and local urban studies: Global change
modeling (e.g., climate modeling) usually functions at much coarser spatial
resolutions (e.g., 0.5–2°) and longer time horizons (e.g., throughout the 21st
century) than common urban land change models (e.g., 30–500 m, up to 30 years).
The choice is also a balance between the different spatial resolutions of available
input data (Table 2). To capture the often incremental urban land expansion with
local-scale precision, we used the fraction of urban land within each 1/8° grid cell as
the response variable, rather than the more commonly used binary variable (urban
vs. non-urban) or the probability of conversion (of entire grids) in conventional
urban land change studies. The 1/8° urban land fractions for historical times
(1980–2010) were derived from a global 40-year (1975–2014) time series of 38-m
Landsat remote sensing based urban land observations23. The fine-spatial
resolution of the base data gave the fraction estimates the most precision currently
possible. Changing from a categorical response variable to a numerical one also
alters the set of analytical tools available for model development, another way in
which this modeling framework differs from conventional methods.

In this work, urban land is defined as the Earth’s surface that is covered
primarily by manmade materials, such as cement, asphalt, steel, glass, etc. This land
cover type is referred to by different communities using different terms (with
nuances), such as built-up land, impervious surface, and developed land. Remote
sensing is an ideal source of global observations for this land cover, but has shown
less success identifying settlements made of natural materials similar to their
surrounding environments. As an observational technique, it also tends to
underestimate development of really low density, e.g., exurbanization. Nonetheless,
our input data, by having a much finer spatial resolution (38 m) than the previous
commonly-used large-scale urban land cover data35 (MODIS at 500 m), are less
affected by these issues although not immune. A few other remote sensing based
datasets reporting urban land have also become available in recent years, for
example, the European Space Agency (ESA) Climate Change Initiative’s
(CCI) Land Cover project36 maps global land cover at 300 m for 1992–2015, and
the German Aerospace Center’s (DLR) Global Urban Footprint dataset37 offers a
12 m snapshot around 2012. However, none provides as long of a time series at as
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Fig. 6 Modeling framework. This framework consists of two new data-driven urban simulation models: The Country-Level Urban Buildup Scenario
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fine of a spatial resolution in combination. We therefore consider our input data
the best available for globally-consistent spatially-explicit time-series observations
of change in urban land.

CLUBS. At the national level, CLUBS generates scenarios estimating for each
country how much total new urban land development would happen per decade of
the 21st century, driven by inputs from existing SSP components, including
quantitative projections of population size, urban population fraction, and GDP, as
well as qualitative narratives describing alternative future societal trends (Table 2).
CLUBS’s model structure was designed to reflect robust relationships identified by
mining historical data on urban land expansion, demographic change, and eco-
nomic growth.

We first ran multiple feature selection methods (lasso regression, regression
tree, and correlation matrix) on 99 different metrics of (change in) urban land,
GDP, population size, and urban population share, and 60 variant subsets of these
metrics. Example metrics for measuring urban land include national total amount
of urban land, national total amount of change, national change rate, per capita
urban land, per capita change, per capita change rate, at 10-, 20-, 30-year intervals,
calculated for various periods within three decades (1980–2010) of historical data.
We found that the most robust statistical relationships across space and time occur
among national change rates of urban land, demographic change, and economic
growth (i.e., how fast each variable changes at national level) measured over 10-
year intervals, rather than the commonly-used per capita urban land and per
capita GDP.

We also ran multiple clustering analysis methods (hierarchical clustering, k-
means clustering, and decision tree) on the different combinations of the different
metrics mentioned above. The analysis uncovered three urban land expansion
styles (rapidly urbanizing, steadily urbanizing, and urbanized) as three unique
clusters, and the country-decade combinations (e.g., US 1980–1990, Ethiopia
1990–2000) can be classified into these clusters using three descriptive variables
(Table 1). We trained a k-means classifier using these variables from historical data
(1980–2010). The analysis results show that common geographic regions do not
separate the different urbanization styles well, and over time countries evolve
through the three styles from rapidly-urbanizing to urbanized (Supplementary
Table 2). As some existing literature19 has alluded to, we found that the same unit
change in population or GDP show different effects on the same country at
different times, and on different countries within the same geographic region (e.g.,
Singapore and Indonesia show distinctively different urban land expansion
trajectories). When making future projections, each country is classified, at the
beginning of every decade, into one of the three urban land expansion styles. As the
country develops over time, it may receive different classifications for different
decades and under different socioeconomic scenarios (Supplementary Tables 3 and
4) in response to how the country’s urbanization maturity evolves.

For each of the three urban land expansion styles, we trained a unique model
using data on country-decade combinations belonging to that urban expansion

style during historical times (1980–2010). If a country experienced urban
expansion style A during 1980–1990 and urban expansion style B during
1990–2000, its data over 1980–1990 is used to train style A model and its data over
1990–2000 is used for style B model. For each urban expansion style, we re-ran
feature selection (lasso regression, regression tree, and correlation matrix) and
identified the strongest explanatory variables for estimating national decadal urban
land expansion rate under that urban expansion style. We tested diverse variants of
general linear models and regression trees in search of a modeling method, and
chose the simple linear model in the end (Table 1), for its robustness,
interpretability, and ability to generate alternative scenarios in a transparent way.
Overall, the national model exhibits an R2 of 0.503 for estimating decadal national
urban land change rates (i.e., the model’s response variable), and if we translate that
to end-of-the-decade national total urban land areas, the R2 would be 0.998. The
high value of the latter R2 is partially due to the low magnitude of decadal changes
in national total urban land areas relative to existing amounts, which is also
evidenced by the fact that the R2 of a dummy baseline model that assumes constant
national change rates is 0.983 on the same variable.

We developed SSP-consistent urban land expansion scenarios by combining
qualitative interpretation of existing SSP narratives, and quantitative simulations
using Monte Carlo experiments. Existing SSP narratives describe alternative trends
of future population change, economic development, political governance, and
technological progress, but not urbanization explicitly. Considering the SSP
narratives as global socioeconomic contexts, we determine and assign for each of
the three urban land expansion styles whether they are likely to experience high,
medium, or low urban land expansion rates within their respective uncertainty
ranges in different scenarios (Table 3). For example, under SSP 4, inequality is
prevalent within and across countries. Rapidly urbanizing countries (which are

Table 2 Key model variables and their data sources.

Key variables Training data source Projection data source

Spatial and national urban land
time series

Global Human Settlement Layer23 (38m, decadal
1980–2010b)

PROJECTIONS (1/8°, decadal 2000–2100)

National population sizea U.N. World Population Prospect38 (national total, decadal
1980–2010)

SSP National Population Count Projections39

(national total, decadal 2000–2100)
National urban population sharea U.N. World Urbanization Prospect7 (national total, decadal

1980–2010)
SSP National Urban Population Projections8

(national total, decadal 2000–2100)
National GDPa OECD National GDPs40 (national total, decadal 1980–2010) SSP National GDP Projections40 (national

total, decadal 2000–2100)
National scenario trajectory setting
(Monte Carlo experiment)a

SSP Narratives25 (qualitative descriptions of
trends 2000–2100)

Spatiotemporal texture of urban
land change

Global Human Settlement Layer23 (38m, decadal
1980–2010)

Updating with PROJECTIONS (1/8°, decadal
2000–2100)

Spatial population count time series Gridded Population of the World (v.4 and 3)26 (1 km,
decadal 2000–2010)

SSP Spatial Population Projections41 (1/8°,
decadal 2000–2100)

Topographic contexts (elevation, slope) Global Multi-Resolution Terrain Elevation42 (1 km, snapshot) Static over time
Distance to waterbodies World Waterbodies43 (1 km, snapshot) Static over time
Distance to existing cities (with
>300k ppl)

U.N. World Urbanization Prospect7 (latitude–longitude
coordinates, snapshot)

Static over time

Developable land mask SSP Spatial Population Projections41 (1/8°, snapshot), Global
Rural-Urban Mapping Project43 (1 km, snapshot)

Static over time

aThese rows are used by CLUBS. The rows at the bottom half of the table are used by SELECT.
bGHSL has four time points—1975, 1990, 2000, 2014—we used temporal linear interpolation to generate maps for 1980 and 2010, so that the time steps are regular and the time points align with other
datasets.

Table 3 Urbanization scenarios corresponding to SSPs 1–5.

SSP 1 SSP 2 SSP 3 SSP 4 SSP 5

1 Urbanized Low Medium Low Medium High
2 Steadily

urbanizing
Low Medium Low Medium High

3 Rapidly
urbanizing

Medium Medium Low Low High

Nations of different urbanization styles under different scenarios are likely to experience
different urban expansion rate trajectories (high, medium, or low) within their respective
uncertainty ranges generated by Monte Carlo simulations. SSPs 1–5: sustainability, middle of the
road, regional rivalry, inequality, fossil-fueled development.
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usually low-income countries) are expected to experience poor domestic economic
development, low internal mobility, and low international investment; hence, their
urbanization progress is expected to follow a slow trajectory. Meanwhile, steadily
urbanizing and urbanized countries are expected to follow a medium trajectory
under the same scenario at the national level, averaging domestic heterogeneity
between faster and slower developing urban areas.

One Monte Carlo experiment was conducted for each country per decade
(Fig. 7). After a country-decade combination is classified into an urban land
expansion style, we generate 1000 model variants of the simple liner model for that
urban expansion style. Model variants were created by randomly drawing
alternative coefficients from normal distributions centered around the estimated
coefficients of the simple linear models, and with their corresponding standard
errors as standard deviations. These model variants each make an estimate,
and together provide an uncertainty range of the country’s change rate in total
urban land area for that decade. Depending on the country’s urbanization
style and scenario (Table 3), a high, medium, or low value derived from the
Monte Carlo estimates is used as the final estimate. A high value is the mean
of the top 80–60% Monte Carlo estimates, a medium value is the mean of
the middle 60–40% estimates, and a low value is the mean of the bottom 40–20%
estimates.

After every country’s Monte Carlo experiment is completed for a decade,
CLUBS updates relevant variables, re-evaluates each country’s urban expansion
style for the next decade, and runs another round of Monte Carlo experiments
for the new decade. This process repeats iteratively until time reaches the end of
the 21st century.

SELECT. SELECT was also developed using a data-science approach and oriented
for long-term, global studies of human–environment interactions. Specifics of
SELECT, its validations, and a comparison with an existing global spatial urban
land model, URBANMOD17, have been published as a separate open-access
paper21. Please refer to that for a full report. Below we provide only a brief sum-
mary of its essential elements. SELECT is a statistical-learning-based model that
consists of the following two model components (Fig. 6).

First, the spatial urban land change model estimates development potentials for
1/8° grid cells covering global land. The model was trained using spatially-explicit
time series of urban land change history (derived from fine-spatial-resolution
remote sensing observations), and best available global data on spatial population
time series and environmental variables (Table 2). The model captures both the
globally-averaged general trend of urbanization and locally-unique dynamics
affecting spatial patterns of new urban land development. To detect the latter, we
divided the world’s land into 375 subnational regions according to the locations
and densities of existing cities with population sizes greater than 300,000, and
modeled each region separately using a non-parametric statistical-learning
technique, generalized additive model (GAM). GAM allows the relationships
between the response variable and its drivers to be fully determined through model
training using observational data, and can “mute” certain drivers for a region if the
drivers are proven not useful for explaining spatial urban land changes within that
region. As a result, different regions are automatically modeled using different sets
of drivers and different relationships according to historical patterns, without

requiring the analyst to manually parameterize hundreds of models for different
regions across the world. We designed this model with long-term projections in
mind; for example, the way the 375 subnational regions were divided guarantees
that each region contains at least one existing sizeable city and a complete spatial
gradient of rural–urban transitions, so that when historically undeveloped
landscapes become urbanized in the future, the model implicitly uses rural–urban
transitions seen during model training at spatially nearby, more urbanized
locations as analogies for temporal transitions that the undeveloped landscapes
have never experienced, avoiding unconfined extrapolation. The global, long-term
scope of this work also limits the number of variables available as drivers for the
spatial model. For example, road network is often considered a useful predictor by
conventional urban land change models; however, no century-long global
projections exist. To account for the effects of these variables and others that are
difficult to quantify consistently across the world (e.g., land tenure), we used 108
focal metrics describing the geometric patterns of urban land and how they change
over time across a range of local-scale neighborhoods surrounding each 1/8° land
grid (more information in ref. 21) as proxies. The use of these proxies as model
drivers is based on the assumption that the present patterns of urban land and how
they have changed reflect the collective effects of all driving factors. The proxy
drivers are updated at every time step and help capture the temporal evolution of
spatial urban land patterns (Fig. 5).

Second, the subnational spatial allocation algorithm distributes exogenously
estimated national decadal total amounts of new urban land development (e.g., the
estimates made by CLUBS), first to subnational regions based on the expansiveness
of each region’s urban land use history and population change (which is
particularly affected by subnational migration), and then to grid cells within each
region proportionally to the development potentials estimated by the spatial urban
land change model.

Compared with existing global spatial urban land models, SELECT excels at
identifying locations for high future development potentials as places with similar
characteristics to observed development hotspots, which may not be places that
have a lot of existing urban land at present21. This advantage resulted from the fact
that SELECT’s response variable is a change map rather than a snapshot of urban
land, and the model’s key drivers are temporally evolving and updated at every
time step, while existing global spatial urban land projections17,20 used static
snapshots as both model response and drivers. By doing so, they implicitly assumed
that places with existing urban land are attractive for new development, which
made the models exhibit behaviors similar to gravity models and are implicitly
relying on spatial interactions for generating change in spatial patterns.

In sum, the CLUBS–SELECT modeling framework is unique and
improves existing large-scale, long-term spatial urban land modeling efforts
through its extensive data-science foundation, strong focus on modeling
change, explicit capturing of multi-scale spatiotemporal variations, smooth
integration of qualitative and quantitative information, and thorough model
evaluation.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
Datasets produced by this work (i.e., national total amounts of urban land [https://doi.
org/10.7910/DVN/85PJ1D], and time series maps of urban land [https://doi.org/10.7910/
DVN/ZHMI1L], under urbanization scenarios consistent with the SSPs) are publicly
downloadable at dataverse.harvard.edu/dataverse/geospatial_human_dimensions_data.
The raw data for all figures displaying contents other than these projections are provided
in the Source Data file.

Code availability
Codes and materials used to produce this work are available upon request.
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